ZHANG Rong, XU Dandan, JIANG Liqun, et al. Effects of litchi pericarp polyphenols on biological characteristics of Peronophythora litchii[J]. Journal of South China Agricultural University, 2019, 40(6): 82-87. DOI: 10.7671/j.issn.1001-411X.201907003
    Citation: ZHANG Rong, XU Dandan, JIANG Liqun, et al. Effects of litchi pericarp polyphenols on biological characteristics of Peronophythora litchii[J]. Journal of South China Agricultural University, 2019, 40(6): 82-87. DOI: 10.7671/j.issn.1001-411X.201907003

    Effects of litchi pericarp polyphenols on biological characteristics of Peronophythora litchii

    More Information
    • Received Date: January 28, 2019
    • Available Online: May 17, 2023
    • Objective 

      To investigate the effects of litchi polyphenols on growth and development of Peronophythora litchii.

      Method 

      Polyphenols were extracted from litchi pericarp by solvent extraction. The effects of polyphenols on colony morphology, biomass, germination mode of sporangium, zoospore germination and oospore number of P. litchii were analyzed by phytopathological research methods.

      Result 

      With the treatment of litchi polyphenols at 150 to 300 μg·mL−1, the hyphal colonies of P. litchii appeared dense, hyphal dry weight and sporangia number were significantly reduced, and the sporangia germinated to release zoospores. With the treatment of litchi polyphenols at 100 to 300 μg·mL−1, zoospores germination was significantly increased while sporangia germination was significantly suppressed. Oospore was hardly observed in PDA control without litchi polyphenols. When litchi polyphenols in the media reached 100 μg·mL−1, the produce of oospores was 10.8 mm−2.

      Conclusion 

      Litchi polyphenols involve in the regulation of the growth and development of P. litchii, can suppress the growth of P. litchii and sporangia germination, indicating their potential for developing new safe biogenic fungicides.

    • [1]
      张荣. 荔枝霜疫霉侵染过程研究及农业措施控制作用初探[D]. 广州: 华南农业大学, 2012: 25.
      [2]
      李堃娟, 黄远峰, 叶建春, 等. 五种杀菌剂防治荔枝霜疫病的田间药效试验[J]. 广西农学报, 2013, 28(2): 12-13. doi: 10.3969/j.issn.1003-4374.2013.02.004
      [3]
      易赛, 潘汝谦, 徐大高, 等. 荔枝霜疫霉菌对烯酰吗啉的敏感性测定[J]. 广东农业科学, 2014, 41(2): 87-91. doi: 10.3969/j.issn.1004-874X.2014.02.022
      [4]
      MA Q, XIE H, JIANG Y, et al. Phenolics and sesquiterpenes from litchi pericarp[J]. J Funct Foods, 2014, 9: 156-161. doi: 10.1016/j.jff.2014.04.020
      [5]
      IARAHIM S R M, MOHAMED G A. Litchi chinensis: Medicinal uses, phytochemistry, and pharmacology[J]. J Ethnopharmacol, 2015, 174: 492-513. doi: 10.1016/j.jep.2015.08.054
      [6]
      WEN L, WU D, JIANG Y, et al. Identification of flavonoids in litchi (Litchi chinensis Sonn.) leaf and evaluation of anticancer activities[J]. J Funct Foods, 2014, 6: 555-563. doi: 10.1016/j.jff.2013.11.022
      [7]
      XU X, XIE H, WANG Y, et al. A-type proanthocyanidins from lychee seeds and their antioxidant and antiviral activities[J]. J Agric Food Chem, 2010, 58: 11667-11672. doi: 10.1021/jf1033202
      [8]
      WANG M, JIANG N, WANG Y, et al. Characterization of phenolic compounds from early and late ripening sweet cherries and their antioxidant and antifungal activities[J]. J Agric Food Chem, 2017, 65: 5413-5420. doi: 10.1021/acs.jafc.7b01409
      [9]
      XU D, DENG Y, HAN T, et al. In vitro and in vivo effectiveness of phenolic compounds for the control of postharvest gray mold of table grapes[J]. Postharvest Biol Tec, 2018, 139: 106-114. doi: 10.1016/j.postharvbio.2017.08.019
      [10]
      王敏, 陈磊, 黄雪松. 荔枝中多酚含量的测定[J]. 食品与发酵工业, 2010, 36(2): 172-175.
      [11]
      SINGLETON V L, ROSSI J A. Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents[J]. Am J Enol Viticult, 1965, 16: 144-158.
      [12]
      曾勇, 罗建军, 丘麒, 等. 23种植物提取物对荔枝霜疫霉病菌的抑菌活性[J]. 华中农业大学学报, 2007, 26(6): 780-784. doi: 10.3321/j.issn:1000-2421.2007.06.006
      [13]
      方中达. 植病研究方法[M]. 北京: 中国农业出版社, 1998: 40-41.
      [14]
      KO W H, CHASE L L, KUNIMOTO R K. A microsyringe method for determining concentration of fungal propagules[J]. Phytopathol, 1973, 63: 1206-1207. doi: 10.1094/Phyto-63-1206
      [15]
      KAO W H, LEU L S. Sporangium germination of Peronophythora litchii, the causal organism of litchi downy blight[J]. Mycologia, 1980, 72(4): 737-748. doi: 10.1080/00275514.1980.12021242
      [16]
      NEUFELD K N, OJIAMBO P S. Interactive effects of temperature and leaf wetness duration on sporangia germination and infection of cucurbit hosts by Pseudoperonospora cubensis[J]. Plant Dis, 2012, 96(3): 345-353. doi: 10.1094/PDIS-07-11-0560
      [17]
      PAULINE B, GRANT B R. Some conditions governing zoospore production in axenic cultures of Phytophthora cinnamomi Rands[J]. Aust J Bot, 1979, 27(2): 103-115. doi: 10.1071/BT9790103
      [18]
      FLIER W G, GRÜNWALD N J, FRY W E, et al. Formation, production and viability of oospores of Phytophthora infestans from potato and Solanum demissum in the Toluca Valley, central Mexico[J]. Mycol Res, 2001, 105(8): 998-1006. doi: 10.1016/S0953-7562(08)61958-9
      [19]
      黄谦. 蓝药睡莲(Nymphaea stellata Willd)多酚活性研究及遗传毒性评价[D]. 成都: 四川师范大学, 2009.
      [20]
      LAMBERT C, BISSO J, WAFFO-TEGUO P, et al. Phenolics and their antifungal role in grapevine wood decay: Focus on the Botryosphaeriaceae family[J]. J Agric Food Chem, 2012, 60: 11859-11868.
    • Cited by

      Periodical cited type(5)

      1. 詹鹏麟,张扬,林建新,许静,庄炜,卢和顶,陈山虎,廖长见. 闽双色6号籽粒发育中叶酸合成代谢基因挖掘与分析. 中国细胞生物学学报. 2025(02): 165-176 .
      2. 谢梓明,聂笑一. 农作物基因组学数据库研究进展. 农业装备与车辆工程. 2025(03): 151-156 .
      3. 李健雄,陈建酉,涂从勇,朱素素,江远汉,何文杰,陈荣彬,何秀英. 试验基地建设新模式的探索与实践——以广东省农业科学院水稻研究所试验基地为例. 中国稻米. 2024(05): 136-140 .
      4. 朱庆莹. 水稻机械化作业对农业生产效率的影响. 农机使用与维修. 2024(10): 31-34 .
      5. 李健雄,姜敏,朱素素,郑智华,吴平波,陈煬杨,黄章慧,涂从勇,张陆军,陈建酉. 新时期农业科研单位开源节流工作的实践与思考——以广东省农业科学院水稻研究所为例. 农业科技管理. 2024(06): 103-107 .

      Other cited types(0)

    Catalog

      Article views (1483) PDF downloads (1235) Cited by(5)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return