Citation: | SHI Qihan, MA Ling, SHI Aoqing, et al. Responses of soil bacterial communities in soybean rhizosphere of abandoned mining area to fertilization methods[J]. Journal of South China Agricultural University, 2020, 41(2): 55-65. DOI: 10.7671/j.issn.1001-411X.201906029 |
To evaluate the effects of chemical fertilizers combined with sodium silicate or earthworm on bacterial community in soybean rhizosphere of abandoned mining areas from the perspectives of bacterial diversity and composition structure, and provide a theoretical basis for future mining area reclamation and ecological restoration.
‘Huachun 9’ soybean was planted in the abandoned mining area of Huangshe Village, Meizhou City, Guangdong, China. Four fertilization treatments were set up. Nitrogen (N), phosphorus (P) and potassium (K) fertilizers were combined with sodium silicate (3NPK+S and 5NPK+S), NPK fertilizers were combined with 20 earthworms per square metre (3NPK+E and 5NPK+E), and No fertilizer was used as control (3CK and 5CK). Soybean rhizosphere soil was sampled three and five months after fertilizing respectively. The soil bacterial total DNA was extracted, 16S rRNA was sequenced and basic soil chemical properties were determined to analyze diversity and structure of bacterial community in soybean rhizosphere responsing to different fertilization treatments in the mining area.
Compared with 3CK, 3NPK+E treatment significantly increased Chao1 and Shannon indexes. Compared with 5NPK+E, 5NPK+S treatment significantly increased Shannon index. The principal coordinate analysis (PCoA) showed that rhizosphere bacterial communities in different treatments were significantly separated at operational taxonomic unit (OTU) level. In terms of relative abundance, uncultured_f_Anaerolineaceae was the dominant genus in soil treated by 3NPK+S, 3NPK+E, 5NPK+S, and 5NPK+E. Mantel test and canonical correlation analysis (CCA) showed that soil organic matter, available phosphorus and total carbon contents had significant effects on rhizosphere bacterial community of 5NPK+E treatment.
The applications of NPK+S and NPK+E fertilizers can effectively improve bacterial diversity, and indirectly promote soil amendment. The bacterial communities are significantly affected by different fertilization treatments. The longer the fertilization duration was, the more significant the effect was. Uncultured_f_Anaerolineaceae is enriched in fertilized soil. It may play an important role in promoting carbon transformation and has the potential to repair soil pollution. NPK+E fertilizer increases organic matter content and promotes growth of bacterial community.
[1] |
王娟, 王正海, 耿欣, 等. 大宝山多金属矿区土壤–植被稀土元素生物地球化学特征[J]. 中国地质大学学报(地球科学版), 2014, 39(6): 733-740.
|
[2] |
ZHAO J, NI T, LI Y, et al. Responses of bacterial communities in arable soils in a rice-wheat cropping system to different fertilizer regimes and sampling times[J/OL]. PLoS One, 2014, 9(1), e85301[2019-06-10]. https://doi.org/10.1371/journal.pone.0085301.
|
[3] |
NANNIPIERI P, ASCHER J, CECCHERINI MT, et al. Microbial diversity and soil functions[J]. Eur J Soil Sci, 2003, 54(4): 655-670. doi: 10.1046/j.1351-0754.2003.0556.x
|
[4] |
吴国伟, 赵艳玲, 付艳华, 等. 复垦矿区土地利用类型变化对植被碳储量的影响[J]. 中国生态农业学报, 2015, 23(11): 1437-1444.
|
[5] |
刘杏兰, 高宗, 刘存寿, 等. 有机−无机肥配施的增产效应及对土壤肥力影响的定位研究[J]. 土壤学报, 1996(2): 138-147. doi: 10.11766/trxb199407060204
|
[6] |
CLEMENTE R, PAREDES C, BERNAL M P, et al. A field experiment investigating the effects of olive husk and cow manure on heavy metal availability in a contaminated calcareous soil from Murcia (Spain)[J]. Agric Ecosyst Environ, 2007, 118(1/2/3/4): 319-326.
|
[7] |
LI X, RUI J, MAO Y, et al. Dynamics of the bacterial community structure in the rhizosphere of a maize cultivar[J]. Soil Biol Biochem, 2014, 68: 392-401. doi: 10.1016/j.soilbio.2013.10.017
|
[8] |
DIMKPA C, WEINAND T, ASCH F. Plant-rhizobacteria interactions alleviate abiotic stress conditions[J]. Plant Cell Environ, 2009, 32(12): 1682-1694. doi: 10.1111/j.1365-3040.2009.02028.x
|
[9] |
王梦姣, 杨国鹏, 乔帅, 等. 植物−根际微生物协同修复有机物污染土壤的研究进展[J]. 江苏农业科学, 2017, 45(1): 5-8.
|
[10] |
LAMBERT D H, WEIDENSAUL F C. Element uptake by myeorrhizal soybean from sewage-sludge-treated soil[J]. Soil Sci Soc Am J, 1991, 55(2): 393-398.
|
[11] |
李建华, 郜春花, 卢朝东, 等. 丛枝菌根和根瘤菌双接种对矿区土地复垦的生态效应[J]. 中国土壤与肥料, 2009(5): 77-80.
|
[12] |
DONG R, GU L, GUO C, et al. Effect of PGPR Serratiamarcescens BC-3 and AMF glomusintraradices on phytoremediation of petroleum contaminated soil[J]. Ecotoxicology, 2014, 23(4): 674-680. doi: 10.1007/s10646-014-1200-3
|
[13] |
杨海君, 肖启明, 刘安元. 土壤微生物多样性及其作用研究进展[J]. 南华大学学报(自然科学版), 2005, 19(4): 21-31.
|
[14] |
范继香, 郜春花, 张强, 等. 施肥措施对矿区复垦土壤活性有机碳库的影响[J]. 中国农学通报, 2012, 28(36): 119-123. doi: 10.3969/j.issn.1000-6850.2012.36.020
|
[15] |
邓晓霞, 黎其万, 米艳华, 等. 云南个旧矿区Pb污染稻田土壤钝化修复[J]. 环境工程学报, 2017, 11(8): 4831-4837. doi: 10.12030/j.cjee.201606017
|
[16] |
张池, 周波, 吴家龙, 等. 蚯蚓在我国南方土壤修复中的应用[J]. 生物多样性, 2018, 26(10): 1091-1102. doi: 10.17520/biods.2018151
|
[17] |
张变华, 靳东升, 张强, 等. 不同施肥处理下工矿复垦区大豆根际效应分析[J]. 大豆科学, 2018, 37(6): 93-100.
|
[18] |
NECHITAYLO T Y, YAKIMOV M M, GODINHO M, et al. Effect of the earthworms Lumbricus terrestris and Aporrectodea caliginosa on bacterial diversity in soil[J]. Microb Ecol, 2010, 59(3): 574-587.
|
[19] |
孟庆英, 于忠和, 贾绘彬, 等. 不同施肥处理对大豆根际土壤微生物及土壤肥力影响[J]. 大豆科学, 2011, 30(3): 471-474.
|
[20] |
BASKER A, KIRKMAN J H, MACGREGOR A N. Changes in potassium availability and other soil properties due to soil ingestion by earthworms[J]. Biol Fert Soil, 1994, 17(2): 154-157.
|
[21] |
YU X, CHENG J, WONG M H. Earthworm-mycorrhiza interaction on Cd uptake and growth of ryegrass[J]. Soil Biol Biochem, 2005, 37(2): 195-201. doi: 10.1016/j.soilbio.2004.07.029
|
[22] |
庞宇飞. 蚯蚓粪对城镇污泥降解过程中理化指标及微生物群落结构的影响[D]. 兰州: 兰州交通大学, 2018.
|
[23] |
刘胜洪, 周玲艳, 杨妙贤, 等. 十种耐逆植物在和平县稀土矿区生态修复中的应用[J]. 天津农业科学, 2013, 19(7): 92-96. doi: 10.3969/j.issn.1006-6500.2013.07.023
|
[24] |
王崇臣, 王鹏, 黄忠臣. 盆栽玉米和大豆对铅、镉的富集作用研究[J]. 安徽农业科学, 2008, 36(24): 10383. doi: 10.3969/j.issn.2095-0446.2015.10.129
|
[25] |
鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 1982: 25-114.
|
[26] |
LIAN T, MA Q, SHI Q, et al. High aluminum stress drives different rhizosphere soil enzyme activities and bacterial community structure between aluminum-tolerant and aluminum-sensitive soybean genotypes[J]. Plant Soil, 2019, 440(1/2): 409-425.
|
[27] |
CASTRILLO G, TEIXEIRA P J P L, PAREDES S H, et al. Root microbiota drive direct integration of phosphate stress and immunity[J]. Nature, 2017, 543(7646): 513-518. doi: 10.1038/nature21417
|
[28] |
LI J, LIN J, PEI C, et al. Variation of soil bacterial communities along a chronosequence of Eucalyptus plantation[J/OL]. Peer J, 2018, 6:e5648[2019-06-11].https://doi.rog/10.7717/peerj.5648.
|
[29] |
LI L, TILMAN D, LAMBERS H, et al. Plant diversity and overyielding: Insights from belowground facilitation of intercropping in agriculture[J]. New Phytolog, 2014, 203(1): 63-69. doi: 10.1111/nph.12778
|
[30] |
SUN R, ZHANG X X, GUO X, et al. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw[J]. Soil Biol Biochem, 2015, 88(5): 9-18. doi: 10.1016/j.soilbio.2015.05.007
|
[31] |
郝月崎, 孙扬, 李晓晶, 等. 赤子爱胜蚓对乙草胺污染土壤微生物群落的影响[J]. 农业环境科学学报, 2018, 37(11): 2456-2466. doi: 10.11654/jaes.2018-0504
|
[32] |
陈来红, 乔光华, 董红丽, 等. 准格尔露天矿区复垦对土壤细菌多样性的影响研究[J]. 干旱区资源与环境, 2012, 26(2): 119-125.
|
[33] |
单世平, 郭照辉, 付祖姣, 等. 降低水稻镉吸收原位钝化修复技术及其作用机理[J]. 生态科学, 2015, 34(4): 175-179.
|
[34] |
李淑仪, 林翠兰, 许建光, 等. 施硅对污染土壤中铬形态及其生物有效性的影响[J]. 生态环境, 2008, 17(1): 227-231.
|
[35] |
刘晶鑫, 迟凤琴, 许修宏, 等. 长期施肥对农田黑土微生物群落功能多样性的影响[J]. 应用生态学报, 2015, 26(10): 3066-3072.
|
[36] |
ZHOU X, SHEN Y, FU X, et al. Application of sodium silicate enhances cucumber resistance to fusarium wilt and alters soil microbial communities[J]. Front Plant Sci, 2018, 9: 624. doi: 10.3389/fpls.2018.00624
|
[37] |
KENNEDY A C, SMITH K L. Soil microbial diversity and the sustainability of agricultural soils[J]. Plant Soil, 1995, 170(1): 75-86. doi: 10.1007/BF02183056
|
[38] |
于冰, 宋阿琳, 李冬初, 等. 长期施用有机和无机肥对红壤微生物群落特征及功能的影响[J]. 中国土壤与肥料, 2017(6): 58-65. doi: 10.11838/sfsc.20170609
|
[39] |
ENAMI Y, OKANO S, YADA H, et al. Influence of earthworm activity and rice straw application on the soil microbial community structure analyzed by PLFA pattern[J]. Eur J Soil Biol, 2001, 37(4): 269-272. doi: 10.1016/S1164-5563(01)01096-2
|
[40] |
YU Z H, WANG G H, JIN J, et al. Soil microbial communities are affected more by land use than seasonal variation in restored grassland and cultivated mollisols in Northeast China[J]. Eur J Soil Biol, 2011, 47(6): 357-363. doi: 10.1016/j.ejsobi.2011.09.001
|
[41] |
LIANG B, WANG L Y, ZHOU Z C, et al. High frequency of Thermodesulfovibrio spp. and Anaerolineaceae in association with Methanoculleus spp. in a long-term incubation of n-alkanes-degrading methanogenic enrichment culture[J]. Front Microb, 2016, 7: 1431. doi: 10.3389/fmicb.2016.01431
|
[42] |
蔡萍萍, 宁卓, 何泽, 等. 采油井场土壤微生物群落结构分布[J]. 环境科学, 2018, 39(7): 3329-3338.
|
[43] |
LIAN T, JIN J, WANG G, et al. The fate of soybean residue-carbon links to changes of bacterial community composition in mollisols differing in soil organic carbon[J]. Soil Biol Biochem, 2017, 109: 50-58. doi: 10.1016/j.soilbio.2017.01.026
|
[44] |
CHAOUI H I, ZIBILSKE L M, OHNO T. Effects of earthworm casts and compost on soil microbial activity and plant nutrient availability[J]. Soil Biol Biochem, 2003, 35(2): 295-302. doi: 10.1016/S0038-0717(02)00279-1
|
[45] |
HORNER-DEVINE M C, CARNEY K M, BOHANNAN B J. An ecological perspective on bacterial biodiversity[J]. Biol Sci, 2004, 271(1535): 113-122.
|
[46] |
SINGH K P, SARKAR M C. Phosphorus availability in soils as affected by fertilizer phosphorus, sodium silicate and farmyard manure[J]. Indian J Agr Sci, 1992, 40(4): 762-767.
|
[47] |
BOSSUYT H, SIX J, HENDRIX P F. Protection of soil carbon by microaggregates within earthworm casts[J]. Soil Biol Biochem, 2005, 37(2): 251-258. doi: 10.1016/j.soilbio.2004.07.035
|
[48] |
OYEDELE D J, SCHJØNNING P, AMUSAN A A. Physicochemical properties of earthworm casts and uningested parent soil from selected sites in Southwestern Nigeria[J]. Ecol Eng, 2006, 28(2): 106-113. doi: 10.1016/j.ecoleng.2006.05.002
|
1. |
王亚琴. 食品中致病微生物的检测方法研究. 食品安全导刊. 2025(11): 131-133 .
![]() |