Citation: | PENG Ziai, LI Dandan, XIA Aoyun, et al. Study on magnetic nanoparticle loading plasmid DNA[J]. Journal of South China Agricultural University, 2020, 41(1): 78-82. DOI: 10.7671/j.issn.1001-411X.20190518 |
To study biophysical property, loading morphology and loading mechanism of nanocarrier-gene complex prepared by magnetic nanoparticle (MNP) loading plasmind DNA, and lay a foundation for application of oriented editing technology based on magnetic nano carrier.
MNP was used as gene carrier to prepare nanocarrier-gene complex MNP-pRGEB32 with plasmid DNA pRGEB32. The abilities of MNP loading and protecting pRGEB32 were analyzed. The particle size distribution, Zeta potential and loading morphology of MNP-pRGEB32 were investigated.
MNP compressed, adsorbed and aggregated pRGEB32 through electrostatic interaction to form nanocarrier-gene complex. MNP could effectively load and protect pRGEB32.
MNP can be used as an ideal gene transfer carrier.
[1] |
韩旭, 丁冠宇, 董青, 等. 基于脂质体的纳米基因载体的研究进展[J]. 应用化学, 2018, 35(7): 735-744. doi: 10.11944/j.issn.1000-0518.2018.07.180031
|
[2] |
卢艳敏. 磁性纳米颗粒作为载体在基因转染中的研究进展[J]. 生物技术通讯, 2013, 24(5): 736-740. doi: 10.3969/j.issn.1009-0002.2013.05.032
|
[3] |
古晓晓, 杜宝吉, 李云辉, 等. 基于纳米材料的基因载体[J]. 化学进展, 2015, 27(8): 1093-1101.
|
[4] |
KHALAJ-KONDORI M, SADEGHIZADEH M, BEHMANESH M, et al. Chemical coupling as a potent strategy for preparation of targeted bacteriophage-derived gene nanocarriers into eukaryotic cells[J]. J Gene Med, 2011, 13(11): 622-631. doi: 10.1002/jgm.1617
|
[5] |
郭大伟, 朱玲英, 顾宁. 磁性纳米颗粒作为基因递送载体的研究进展[J]. 中国材料进展, 2013, 32(10): 605-610.
|
[6] |
MacDONALD C, FRIEDMAN G, ALAMIA J, et al. Time-varied magnetic field enhances transport of magnetic nanoparticles in viscous gel[J]. Nanomedicine, 2010, 5(1): 65-76. doi: 10.2217/nnm.09.97
|
[7] |
孙茂蕾, 徐晓薇, 顾中一, 等. 纳米载体逃逸溶酶体机制及其调控的研究进展[J]. 吉林大学学报(医学版), 2017, 43(4): 845-848.
|
[8] |
NAMGUNG R, SINGHA K, YU M K, et al. Hybrid superparamagnetic iron oxide nanoparticle-branched polyethylenimine magnetoplexes for gene transfection of vascular endothelial cells[J]. Biomaterials, 2010, 31(14): 4204-4213. doi: 10.1016/j.biomaterials.2010.01.123
|
[9] |
NEL A E, MADLER L, VELEGOL D, et al. Understanding biophysicochemical interactions at the nano-bio interface[J]. Nat Mater, 2009, 8(7): 543-557. doi: 10.1038/nmat2442
|
[10] |
AKINC A, QUERBES W, DE S, et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms[J]. Mol Ther, 2010, 18(7): 1357-1364. doi: 10.1038/mt.2010.85
|
[11] |
WEISSLEDER R, KELLY K, SUN E Y, et al. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules[J]. Nat Biotechnol, 2005, 23(11): 1418-1423. doi: 10.1038/nbt1159
|
[12] |
PETROS R A, DeSIMONE J M. Strategies in the design of nanoparticles for therapeutic applications[J]. Nat Rev Drug Discov, 2010, 9(8): 615-627. doi: 10.1038/nrd2591
|
[13] |
MINDELL J A. Lysosomal acidification mechanisms[J]. Annu Rev Physiol, 2012, 74: 69-86. doi: 10.1146/annurev-physiol-012110-142317
|
[14] |
GUO S, HUANG L. Nanoparticles escaping res and endosome: Challenges for siRNA delivery for cancer therapy[J]. J Nanomater, 2011. doi: 10.1155/2011/742895.
|
[15] |
WANG Y, ZHAO X, DU W, et al. Production of transgenic mice through sperm-mediated gene transfer using magnetic nano-carriers[J]. J Biomed Nanotechnol, 2017, 13(12): 1673-1681. doi: 10.1166/jbn.2017.2456
|
[16] |
ZHAO X, Meng Z, WANG Y, et al. Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers[J]. Nat Plants, 2017, 3(12): 956-964. doi: 10.1038/s41477-017-0063-z
|
[17] |
CUNNINGHAM F J, GOH N S, DEMIRER G S, et al. Nanoparticle-mediated delivery towards advancing plant genetic engineering[J]. Trends Biotechnol, 2018, 36(9): 882-897. doi: 10.1016/j.tibtech.2018.03.009
|
[18] |
XIE K, MINKENBERG B, YANG Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system[J]. Proc Natl Acad Sci USA, 2015, 112(11): 3570-3575. doi: 10.1073/pnas.1420294112
|
[19] |
KWAK S Y, LEW T T S, SWEENEY C J, et al. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers[J]. Nat Nanotechnol, 2019, 14(5): 447-455. doi: 10.1038/s41565-019-0375-4
|
[20] |
白华荣, 范换换, 张晓兵, 等. 核酸适体-纳米材料复合物用于癌症的诊断与靶向治疗研究进展[J]. 物理化学学报, 2018, 34(4): 348-360. doi: 10.3866/PKU.WHXB201708311
|
[21] |
冯婷婷, 郭建花. 纳米材料在生物医学中的应用[J]. 当代化工研究, 2018(2): 159-162. doi: 10.3969/j.issn.1672-8114.2018.02.098
|
[22] |
宋瑜, 李颖, 崔海信, 等. 两种阳离子纳米基因载体及植物基因介导效果的研究[J]. 生物技术通报, 2009(6): 75-80.
|
[23] |
李瑶, 崔海信, 刘琪, 等. 磁性纳米颗粒作为基因载体的研究发展概况[J]. 功能材料, 2010, 41(S1): 14-19.
|
[24] |
RHAESE S, Von BRIESEN H, RUBSAMEN-WAIGMANN H, et al. Human serum albumin-polyethylenimine nanoparticles for gene delivery[J]. J Control Release, 2003, 92(1/2): 199-208.
|
[25] |
HE X X, WANG K M, TAN W H, et al. Bioconjugated nanoparticles for DNA protection from cleavage[J]. J Am Chem Soc, 2003, 125(24): 7168-7169. doi: 10.1021/ja034450d
|
[26] |
VIJAYANATHAN V, THOMAS T, ANTONY T, et al. Formation of DNA nanoparticles in the presence of novel polyamine analogues: A laser light scattering and atomic force microscopic study[J]. Nucleic Acids Res, 2004, 32(1): 127-134. doi: 10.1093/nar/gkg936
|
[27] |
CHAPMAN K M, MEDRANO G A, JAICHANDER P, et al. Targeted germline modifications in rats using CRISPR/Cas9 and spermatogonial stem cells[J]. Cell Rep, 2015, 10(11): 1828-1835. doi: 10.1016/j.celrep.2015.02.040
|