ZHANG Zhigang, ZHU Qiming, HE Jie, et al. Vehicle heading angle measure technology based on RTK-GNSS and MEMS gyroscope[J]. Journal of South China Agricultural University, 2019, 40(5): 34-37. DOI: 10.7671/j.issn.1001-411X.201905085
    Citation: ZHANG Zhigang, ZHU Qiming, HE Jie, et al. Vehicle heading angle measure technology based on RTK-GNSS and MEMS gyroscope[J]. Journal of South China Agricultural University, 2019, 40(5): 34-37. DOI: 10.7671/j.issn.1001-411X.201905085

    Vehicle heading angle measure technology based on RTK-GNSS and MEMS gyroscope

    More Information
    • Received Date: May 24, 2019
    • Available Online: May 17, 2023
    • Objective 

      To better meet the accuracy requirement of vehicle heading angle measure.

      Method 

      Kalman filter algorithm was proposed. The latitude, longitude and elevation measured by RTK-GNSS receiver were converted to plane coordinates using Gaussian projection. The Gaussian plane coordinates and the accumulated heading angle measured by gyroscope were integrated by Kalman filter, and finally more accurate heading angle was obtained.

      Result 

      The integrated curve kept the entire variation trend of the heading angle measured by GNSS receiver and the partial variation trend measured by MEMS gyroscope. The curve was smoother than that based on GNSS and gyroscope, and could follow action of vehicle 180° turning.

      Conclusion 

      The Kalman filter algorithm can measure the vehicle heading angle data in real time and the precision was improved 80% more than the result measured by GNSS.

    • [1]
      别韦苇, 卢飞腾, 胡进, 等. 基于多器件的航向角优化算法[C]// 2018中国汽车工程学会年会论文集. 上海: 中国汽车工程学会, 汽车环境保护技术分会. 2018: 104-107.
      [2]
      卢志才, 米东, 徐章遂, 等. 基于改进巨磁阻传感器的地磁定向系统[J]. 传感技术学报, 2011, 24(2): 304-307. doi: 10.3969/j.issn.1004-1699.2011.02.028
      [3]
      李秉玺. 基于系统芯片的捷联式定向系统研究[D]. 西安: 西北工业大学, 2004.
      [4]
      HE P, CARDOU P, DESBIENS A, et al. Estimating the orientation of a rigid body moving in space using inertial sensors[J]. Multibody Syst Dyn, 2015, 35(1): 63-89. doi: 10.1007/s11044-014-9425-8
      [5]
      LI Y, EFATMANESHNIK M, DEMPSTER A G. Attitude determination by integration of MEMS inertial sensors and GPS for autonomous agriculture applications[J]. GPS Solut, 2012, 16(1): 41-52. doi: 10.1007/s10291-011-0207-y
      [6]
      刘永彪. 基于GNSS双天线的定向研究[D]. 南昌: 南昌大学, 2011.
      [7]
      夏佩, 王峰, 黄祖德, 等. 基于双天线的RTK-GNSS定向方法[J]. 中国新通信, 2018, 20(22): 58-60. doi: 10.3969/j.issn.1673-4866.2018.22.045
      [8]
      甘雨, 隋立芬, 戚国宾, 等. 陆地导航中GNSS/陀螺仪组合实时测姿方法[J]. 武汉大学学报(信息科学版), 2015, 40(3): 379-383.
      [9]
      HE J, XIE J, HE X, et al. Analytical study and compensation for temperature drifts of a bulk silicon MEMS capacitive accelerometer[J]. Sens Actuators A Phys, 2016, 239: 174-184. doi: 10.1016/j.sna.2016.01.026
      [10]
      陈亮, 杨柳庆, 肖前贵. 基于梯度下降法和互补滤波的航向姿态参考系统[J]. 电子设计工程, 2016, 24(24): 38-41.
      [11]
      姚卓. 基于双天线的车载GNSS/INS组合导航技术研究[D]. 武汉: 武汉大学, 2017.
      [12]
      张智刚, 罗锡文, 胡炼, 等. 4种DGPS模块动态定位精度测试与分析[J]. 华南农业大学学报, 2010, 31(1): 102-107. doi: 10.3969/j.issn.1001-411X.2010.01.025
      [13]
      MOUSAZADEH H. A technical review on navigation systems of agricultural autonomous off-road vehicles[J]. J Terramechanics, 2013, 50(3): 211-232. doi: 10.1016/j.jterra.2013.03.004
      [14]
      NAGASAKA Y, SAITO H, TAMAKI K, et al. An autonomous rice transplanter guided by global positioning system and inertial measurement unit[J]. J Field Robot, 2010, 26(6/7): 537-548.
      [15]
      CECHOWICZ R. Bias drift estimation for MEMS gyroscope used in inertial navigation[J]. Acta Mechanica Et Automatica, 2017, 11(2): 104-110. doi: 10.1515/ama-2017-0016
    • Cited by

      Periodical cited type(6)

      1. 贾鹿,赵磊,凌飞,李广亚. 基于归一化RBFNN的油井动液面测量数据异常辨识. 电子测量技术. 2024(24): 188-194 .
      2. 李志臣,凌秀军,李鸿秋,李志军. 基于改进ShuffleNet的板栗分级方法. 山东农业大学学报(自然科学版). 2023(02): 299-307 .
      3. 郑显润,郑鹏,王文秀,程亚红,苏宇锋. 基于多尺度特征提取深度残差网络的水稻害虫识别. 华南农业大学学报. 2023(03): 438-446 . 本站查看
      4. 邓雪阳,邓达平,苏万靖. 基于并行深度卷积神经网络的舰船通信异常数据检测研究. 舰船科学技术. 2023(15): 119-122 .
      5. 杨亚琦,李博雄,杨东霞,刘燕. 基于信息熵的异常数据判别方法. 科学技术创新. 2023(24): 194-199 .
      6. 杜肖鹏,李恺,王春辉,侯永,尹义蕾,潘守江,张凌风. 国内温室空气温湿度检测及传输技术研究进展. 农业工程技术. 2022(34): 28-34 .

      Other cited types(1)

    Catalog

      Article views PDF downloads Cited by(7)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return