• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
QIN Qiwei, HUANG Xiaohong. Pathogenesis of Singapore grouper iridovirus (SGIV) and its immune control strategies[J]. Journal of South China Agricultural University, 2019, 40(5): 78-90. DOI: 10.7671/j.issn.1001-411X.201905083
Citation: QIN Qiwei, HUANG Xiaohong. Pathogenesis of Singapore grouper iridovirus (SGIV) and its immune control strategies[J]. Journal of South China Agricultural University, 2019, 40(5): 78-90. DOI: 10.7671/j.issn.1001-411X.201905083

Pathogenesis of Singapore grouper iridovirus (SGIV) and its immune control strategies

More Information
  • Received Date: June 09, 2019
  • Available Online: May 17, 2023
  • Iridovirus is one of the most serious viral pathogens in marine and freshwater cultured fish. Up to now, iridoviruses have been isolated and identified from more than 100 fish species worldwide. Singapore grouper iridovirus (SGIV), a novel species of Ranavirus, was isolated from diseased grouper in Singapore. On the basis of establishing a virus-sensitive cell infection model, morphology, ultrastructure, replication and biochemical characterization of SGIV in grouper host cells were studied by electron microscopy and biochemical analysis. The molecular biological characterizations of SGIV, including viral genome, transcriptome, envelope proteome and viral microRNAs, were systematically analyzed by Omics analysis. The interactions between SGIV and host were investigated from many aspects, including identifying the target tissues of SGIV infection, tracking the single virus entry and transport, non-apoptosis cell death induced by SGIV infection, functions of host immune related genes in virus infection. Meanwhile, a variety of SGIV detection technologies have been developed, including antibody-based flow cytometry, microfluidic chip detection technology platform system, loop-mediated isothermal amplification (LAMP) and nucleic acid aptamer detection method. In addition, SGIV inactivated vaccine, subunit vaccine and DNA vaccine were developed. The results provide a theoretical basis for better understanding of the pathogenic mechanism of SGIV infection, and offer technical supports for the prevention and control of SGIV.

  • [1]
    GRAY M J, CHINCHAR V G. Ranaviruses: Lethal pathogens of ectothermic vertebrates[M]. SpringerOpen, 2015.
    [2]
    CHINCHAR V G, WALTZEK T B, SUBRAMANIAM K. Ranaviruses and other members of the family Iridoviridae: Their place in the virosphere[J]. Virology, 2017, 511: 259-271. doi: 10.1016/j.virol.2017.06.007
    [3]
    QIN Q W, WU T H, JIA T L, et al. Development and characterization of a new tropical marine fish cell line from grouper, Epinephelus coioides susceptible to iridovirus and nodavirus[J]. J Virol Methods, 2006, 131(1): 58-64. doi: 10.1016/j.jviromet.2005.07.009
    [4]
    HUANG X H, HUANG Y H, SUN J, et al. Characterization of two grouper Epinephelus akaara cell lines: Application to studies of Singapore grouper iridovirus (SGIV) propagation and virus-host interaction[J]. Aquaculture, 2009, 292(3): 172-179.
    [5]
    OUYANG Z L, HUANG X H, HUANG E Y, et al. Establishment and characterization of a new marine fish cell line derived from red-spotted grouper Epinephelus akaara[J]. J Fish Biol, 2010, 77(5): 1083-1095. doi: 10.1111/jfb.2010.77.issue-5
    [6]
    GOGN J, HUANG Y H, HUANG X H, et al. Establishment and characterization of a new cell line derived from kidney of grouper, Epinephelus akaara (Temminck & Schlegel), susceptible to Singapore grouper iridovirus (SGIV)[J]. J Fish Dis, 2011, 34(9): 677-686. doi: 10.1111/jfd.2011.34.issue-9
    [7]
    ZHOU L L, LI P F, LIU J X, et al. Establishment and characterization of a mid-kidney cell line derived from golden pompano Trachinotus ovatus, a new cell model for virus pathogenesis and toxicology studies[J]. In Vitro Cell Dev-An, 2017, 53(4): 320-327. doi: 10.1007/s11626-016-0112-3
    [8]
    LI P F, ZHOU L L, NI S W, et al. Establishment and characterization of a novel cell line from the brain of golden pompano (Trachinotus ovatus)[J]. In Vitro Cell Dev-An, 2016, 52(4): 410-418. doi: 10.1007/s11626-015-9988-6
    [9]
    WEI S N, YU Y P, QIN Q W. Establishment of a new fish cell line from the caudal fin of golden pompano Trachinotus ovatus and its susceptibility to iridovirus[J]. J Fish Biol, 2018, 92(6): 1675-1686. doi: 10.1111/jfb.2018.92.issue-6
    [10]
    QIN Q W, LAM T J, SIN Y M, et al. Electron microscopic observations of a marine fish iridovirus isolated from brown-spotted grouper, Epinephelus tauvina[J]. J Virol Methods, 2001, 98(1): 17-24. doi: 10.1016/S0166-0934(01)00350-0
    [11]
    QIN Q W, CHANG S F, NGOH-LIM G H, et al. Characterization of a novel ranavirus isolated from grouperEpinephelus tauvina[J]. Dis Aquat Organ, 2003, 53(1): 1-9.
    [12]
    SONG W J, QIN Q W, QIU J, et al. Functional genomics analysis of Singapore grouper iridovirus: Complete sequence determination and proteomic analysis[J]. J Virol, 2004, 78(22): 12576-12590. doi: 10.1128/JVI.78.22.12576-12590.2004
    [13]
    ZHOU S, WAN Q J, HUANG Y H, et al. Proteomic analysis of Singapore grouper iridovirus envelope proteins and characterization of a novel envelope protein VP088[J]. Proteomics, 2011, 11(11): 2236-2248. doi: 10.1002/pmic.200900820
    [14]
    HUANG X H, GONG J, HUANG Y H, et al. Characterization of an envelope gene VP19 from Singapore grouper iridovirus[J]. Virol J, 2013, 10: 354. doi: 10.1186/1743-422X-10-354
    [15]
    ZHANG H L, ZHOU S, XIA L Q, et al. Characterization of the VP39 envelope protein from Singapore grouper iridovirus[J]. Can J Microbiol, 2015, 61(12): 924-937. doi: 10.1139/cjm-2015-0118
    [16]
    TENG Y, HOU Z W, GONG J, et al. Whole-genome transcriptional profiles of a novel marine fish iridovirus, Singapore grouper iridovirus (SGIV) in virus-infected grouper spleen cell cultures and in orange-spotted grouper, Epinephuluscoioides[J]. Virology, 2008, 377(1): 39-48. doi: 10.1016/j.virol.2008.04.011
    [17]
    YAN Y, CUI H C, JIANG S, et al. Identification of a novel marine fish virus, Singapore grouper iridovirus-encoded microRNAs expressed in grouper cells by Solexa sequencing[J]. PLoS One, 2011, 6(4): e19148. doi: 10.1371/journal.pone.0019148
    [18]
    XIA L Q, CAO J H, HUANG X H, et al. Characterization of Singapore grouper iridovirus (SGIV) ORF086R, a putative homolog of ICP18 involved in cell growth control and virus replication[J]. Arch Virol, 2009, 154(9): 1409-1416. doi: 10.1007/s00705-009-0457-y
    [19]
    XIA L Q, LIANG H, HUANG Y H, et al. Identification and characterization of Singapore grouper iridovirus (SGIV) ORF162L, an immediate-early gene involved in cell growth control and viral replication[J]. Virus Res, 2010, 147(1): 30-39. doi: 10.1016/j.virusres.2009.09.015
    [20]
    HUANG X H, HUANG Y H, GONG J, et al. Identification and characterization of a putative lipopolysaccharide-induced TNF-alpha factor (LITAF) homolog from Singapore grouper iridovirus[J]. Biochem Bioph Res Co, 2008, 373(1): 140-145. doi: 10.1016/j.bbrc.2008.06.003
    [21]
    CAI J, HUANG Y H, WEI S N, et al. Characterization of LPS-induced TNFα factor (LITAF) from orange-spotted grouper, Epinephelus coioides[J]. Fish Shellfish Immunol, 2013, 35(6): 1858-1866. doi: 10.1016/j.fsi.2013.09.023
    [22]
    HUANG X H, HUANG Y H, CAI J, et al. Identification and characterization of a tumor necrosis factor receptor like protein encoded by Singapore grouper iridovirus[J]. Virus Res, 2013, 178(2): 340-348. doi: 10.1016/j.virusres.2013.09.023
    [23]
    YU Y P, HUANG Y H, WEI S N, et al. A tumour necrosis factor receptor-like protein encoded by Singapore grouper iridovirus modulates cell proliferation, apoptosis and viral replication[J]. J Gen Virol, 2016, 97(3): 756-766. doi: 10.1099/jgv.0.000379
    [24]
    YU Y P, HUANG Y H, NI S W, et al. Singapore grouper iridovirus (SGIV) TNFR homolog VP51 functions as a virulence factor via modulating host inflammation response[J]. Virology, 2017, 511: 280-289. doi: 10.1016/j.virol.2017.06.025
    [25]
    GONG J, HUANG Y H, HUANG X H, et al. Nuclear-export-signal-dependent protein translocation of dUTPase encoded by Singapore grouper iridovirus[J]. Arch Virol, 2010, 155(7): 1069-1076. doi: 10.1007/s00705-010-0684-2
    [26]
    YAN Y, CUI H C, GUO C Y, et al. An insulin-like growth factor homologue of Singapore grouper iridovirus modulates cell proliferation, apoptosis and enhances viral replication[J]. J Gen Virol, 2013, 94: 2759-2770. doi: 10.1099/vir.0.056135-0
    [27]
    YAN Y, CUI H C, GUO C Y, et al. Singapore grouper iridovirus-encoded semaphorin homologue (SGIV-sema) contributes to viral replication, cytoskeleton reorganization and inhibition of cellular immune responses[J]. J Gen Virol, 2014, 95: 1144-1155. doi: 10.1099/vir.0.060608-0
    [28]
    YAN Y, GUO C Y, NI S W, et al. Singapore grouper iridovirus (SGIV) encoded SGIV-miR-13 attenuates viral infection via modulating major capsid protein expression[J]. Virus Res, 2015, 205: 45-53. doi: 10.1016/j.virusres.2015.05.010
    [29]
    GUO C Y, YAN Y, CUI H C, et al. miR-homoHSV of Singapore grouper iridovirus (SGIV) inhibits expression of the SGIV pro-apoptotic factor LITAF and attenuates cell death[J]. PLoS One, 2013, 8(12): e83027. doi: 10.1371/journal.pone.0083027
    [30]
    HUANG C H, ZUANG X, GIN K Y, et al. In situ hybridization of a marine fish virus, Singapore grouper iridovirus with a nucleic acid probe of major capsid protein[J]. J Virol Methods, 2004, 117(2): 123-128. doi: 10.1016/j.jviromet.2004.01.002
    [31]
    FU J, HUANG Y H, CAI J, et al. Identification and characterization of Rab7 from orange-spotted grouper, Epinephelus coioides[J]. Fish Shellfish Immunol, 2014, 36(1): 19-26. doi: 10.1016/j.fsi.2013.10.002
    [32]
    WANG S W, HUANG X H, HUANG Y H, et al. Entry of a novel marine DNA virus, Singapore grouper iridovirus, into host cells occurs via clathrin-mediated endocytosis and macropinocytosis in a pH-dependent manner[J]. J Virol, 2014, 88(22): 13047-13063. doi: 10.1128/JVI.01744-14
    [33]
    PAN Y, WANG S W, SHAN Y, et al. Ultrafast tracking of a single live virion during the invagination of a cell membrane[J]. Small, 2015, 11(23): 2782-2788. doi: 10.1002/smll.201403491
    [34]
    HUANG X H, HUANG Y H, OUYANG Z L, et al. Singapore grouper iridovirus, a large DNA virus, induces nonapoptotic cell death by a cell type dependent fashion and evokes ERK signaling[J]. Apoptosis, 2011, 16(8): 831-845. doi: 10.1007/s10495-011-0616-y
    [35]
    HUANG Y H, HUANG X H, YAN Y, et al. Transcriptome analysis of orange-spotted grouper (Epinephelus coioides) spleen in response to Singapore grouper iridovirus[J]. BMC Genomics, 2011, 12: 556. doi: 10.1186/1471-2164-12-556
    [36]
    HUANG X H, HUANG Y H, OUYANG Z L, et al. Roles of stress-activated protein kinases in the replication of Singapore grouper iridovirus and regulation of the inflammatory responses in grouper cells[J]. J Gen Virol, 2011, 92: 1292-1301. doi: 10.1099/vir.0.029173-0
    [37]
    CAI J, HUANG Y H, WEI S N, et al. Characterization of p38 MAPKs from orange-spotted grouper, Epinephelus coioides involved in SGIV infection[J]. Fish Shellfish Immunol, 2011, 31(6): 1129-1136. doi: 10.1016/j.fsi.2011.10.004
    [38]
    WEI S N, HUANG Y H, HUANG X H, et al. Characterization of c-Jun from orange-spotted grouper, Epinephelus coioides involved in SGIV infection[J]. Fish Shellfish Immunol, 2015, 43(1): 230-240. doi: 10.1016/j.fsi.2014.12.033
    [39]
    GUO M L, WEI J G, ZHOU Y S, et al. MKK7 confers different activities to viral infection of Singapore grouper iridovirus (SGIV) and nervous necrosis virus (NNV) in grouper[J]. Fish Shellfish Immunol, 2016, 57: 419-427. doi: 10.1016/j.fsi.2016.09.002
    [40]
    GUO M L, WEI J G, ZHOU Y S, et al. c-Jun N-terminal kinases 3 (JNK3) from orange-spotted grouper, Epinephelus coioides, inhibiting the replication of Singapore grouper iridovirus (SGIV) and SGIV-induced apoptosis[J]. Dev Comp Immunol, 2016, 65: 169-181. doi: 10.1016/j.dci.2016.06.009
    [41]
    GUO M L, WEI J G, ZHOU Y S, et al. Molecular clone and characterization of c-Jun N-terminal kinases 2 from orange-spotted grouper, Epinephelus coioides[J]. Fish Shellfish Immunol, 2016, 49: 355-363. doi: 10.1016/j.fsi.2015.12.001
    [42]
    GUO M L, WEI J G, HUANG X H, et al. JNK1 derived from orange-spotted grouper, Epinephelus coioides, involving in the evasion and infection of Singapore grouper iridovirus (SGIV)[J]. Front Microbiol, 2016, 7: 121.
    [43]
    BANKS L, PIM D, THOMAS M. Viruses and the 26S proteasome: Hacking into destruction[J]. Trends BiochemSci, 2003, 28(8): 452-459. doi: 10.1016/S0968-0004(03)00141-5
    [44]
    RANDOW F, LEHNER P J. Viral avoidance and exploitation of the ubiquitin system[J]. Nat Cell Biol, 2009, 11(5): 527-534. doi: 10.1038/ncb0509-527
    [45]
    HUANG X H, WEI S N, NI S W, et al. Ubiquitin-proteasome system is required for efficient replication of Singapore grouper iridovirus[J]. Front Microbiol, 2018, 9: 2798. doi: 10.3389/fmicb.2018.02798
    [46]
    HUANG Y H, YU Y P, YANG Y, et al. Fish TRIM8 exerts antiviral roles through regulation of the proinflammatory factors and interferon signaling[J]. Fish Shellfish Immunol, 2016, 54: 435-444. doi: 10.1016/j.fsi.2016.04.138
    [47]
    YANG Y, HUANG Y H, YU Y P, et al. RING domain is essential for the antiviral activity of TRIM25 from orange spotted grouper[J]. Fish Shellfish Immunol, 2016, 55: 304-314. doi: 10.1016/j.fsi.2016.06.005
    [48]
    YU Y P, HUANG X H, LIU J X, et al. Fish TRIM32 functions as a critical antiviral molecule against iridovirus and nodavirus[J]. Fish Shellfish Immunol, 2017, 60: 33-43. doi: 10.1016/j.fsi.2016.11.036
    [49]
    YANG Y, HUANG Y H, YU Y P, et al. Negative regulation of the innate antiviral immune response by TRIM62 from orange spotted grouper[J]. Fish Shellfish Immunol, 2016, 57: 68-78. doi: 10.1016/j.fsi.2016.08.035
    [50]
    LV S Y, ZHAN Y, ZHENG J Y, et al. Negative regulation of the interferon response by finTRIM82 in the orange spotted grouper[J]. Fish Shellfish Immunol, 2019, 88: 391-402. doi: 10.1016/j.fsi.2019.03.004
    [51]
    HUANG Y H, ZHANG J C, LIU J X, et al. Fish TRIM35 negatively regulates the interferon signaling pathway in response to grouper nodavirus infection[J]. Fish Shellfish Immunol, 2017, 69: 142-152. doi: 10.1016/j.fsi.2017.08.019
    [52]
    YU Y P, HUANG X H, ZHANG J C, et al. Fish TRIM16L exerts negative regulation on antiviral immune response against grouper iridoviruses[J]. Fish Shellfish Immunol, 2016, 59: 256-267. doi: 10.1016/j.fsi.2016.10.044
    [53]
    HUANG Y H, YANG M, YU Y P, et al. Grouper TRIM13 exerts negative regulation of antiviral immune response against nodavirus[J]. Fish Shellfish Immunol, 2016, 55: 106-115. doi: 10.1016/j.fsi.2016.05.029
    [54]
    QIN Q W, GIN K Y, LEE L Y, et al. Development of a flow cytometry based method for rapid and sensitive detection of a novel marine fish iridovirus in cell culture[J]. J Virol Methods, 2005, 125(1): 49-54. doi: 10.1016/j.jviromet.2004.12.005
    [55]
    LIU W T, ZHU L, QIN Q W, et al. Microfluidic device as a new platform for immunofluorescent detection of viruses[J]. Lab Chip, 2005, 5(11): 1327-1330. doi: 10.1039/b509086e
    [56]
    MAO X L, ZHOU S, XU D, et al. Rapid and sensitive detection of Singapore grouper iridovirus by loop-mediated isothermal amplification[J]. J ApplMicrobiol, 2008, 105(2): 389-397.
    [57]
    LI P F, YAN Y, WER S N, et al. Isolation and characterization of a new class of DNA aptamers specific binding to Singapore grouper iridovirus (SGIV) with antiviral activities[J]. Virus Res, 2014, 188: 146-154. doi: 10.1016/j.virusres.2014.04.010
    [58]
    LI P F, WEI S N, ZHOU L L, et al. Selection and characterization of novel DNA aptamers specifically recognized by Singapore grouper iridovirus-infected fish cells[J]. J Gen Virol, 2015, 96(11): 3348-3359. doi: 10.1099/jgv.0.000270
    [59]
    LI P F, ZHOU L L, WEI J G, et al. Development and characterization of aptamer-based enzyme-linked apta-sorbent assay for the detection of Singapore grouper iridovirus infection[J]. J Appl Microbiol, 2016, 121(3): 634-643.
    [60]
    ZHANG X B, HUANG C H, QIN Q W. Antiviral properties of hemocyanin isolated from shrimp Penaeus monodon[J]. Antiviral Res, 2004, 61(2): 93-99. doi: 10.1016/j.antiviral.2003.08.019
    [61]
    XU D, WEI J G, CUI H C, et al. Differential profiles of gene expression in grouper Epinepheluscoioides, infected with Singapore grouper iridovirus, revealed by suppression subtractive hybridization and DNA microarray[J]. J Fish Biol, 2010, 77(2): 341-360. doi: 10.1111/jfb.2010.77.issue-2
    [62]
    HUANG Y H, ZHANG J C, OUYANG Z L, et al. Grouper MAVS functions as a crucial antiviral molecule against nervous necrosis virus infection[J]. Fish Shellfish Immunol, 2018, 72: 14-22. doi: 10.1016/j.fsi.2017.10.035
    [63]
    WEI J G, GUO M L, GAO P, et al. Isolation and characterization of tumor necrosis factor receptor-associated factor 6 (TRAF6) from grouper, Epinephelus tauvina[J]. Fish Shellfish Immunol, 2014, 39(1): 61-68. doi: 10.1016/j.fsi.2014.04.022
    [64]
    YU Y P, HUANG Y H, YANG Y, et al. Negative regulation of the antiviral response by grouper LGP2 against fish viruses[J]. Fish Shellfish Immunol, 2016, 56: 358-366. doi: 10.1016/j.fsi.2016.07.015
    [65]
    HUANG Y H, YU Y P, YANG Y, et al. Antiviral function of grouper MDA5 against iridovirus and nodavirus[J]. Fish Shellfish Immunol, 2016, 54: 188-196. doi: 10.1016/j.fsi.2016.04.001
    [66]
    HUANG Y H, OUANG Z L, WANG W, et al. Antiviral role of grouper STING against iridovirus infection[J]. Fish Shellfish Immunol, 2015, 47(1): 157-167. doi: 10.1016/j.fsi.2015.09.014
    [67]
    HU Y, HUANG Y H, LIU J X, et al. TBK1 from orange-spotted grouper exerts antiviral activity against fish viruses and regulates interferon response[J]. Fish Shellfish Immunol, 2018, 73: 92-99. doi: 10.1016/j.fsi.2017.12.010
    [68]
    HUANG Y H, HUANG X H, CAI J, et al. Identification of orange-spotted grouper (Epinephelus coioides) interferon regulatory factor 3 involved in antiviral immune response against fish RNA virus[J]. Fish Shellfish Immunol, 2015, 42(2): 345-352. doi: 10.1016/j.fsi.2014.11.025
    [69]
    CUI H C, YAN Y, WEI J G, et al. Identification and functional characterization of an interferon regulatory factor 7-like (IRF7-like) gene from orange-spotted grouper, Epinephelus coioides[J]. Dev Comp Immunol, 2011, 35(6): 672-684. doi: 10.1016/j.dci.2011.01.021
    [70]
    GAO R, HUANG Y H, HUANG X H, et al. Molecular cloning and characterization of two types of IκBα orthologues in orange-spotted grouper, Epinephelus coioides[J]. Fish Shellfish Immunol, 2014, 38(1): 101-110. doi: 10.1016/j.fsi.2014.02.019
    [71]
    HUANG Y H, HUANG X H, YANG Y, et al. Involvement of fish signal transducer and activator of transcription 3 (STAT3) in nodavirus infection induced cell death[J]. Fish Shellfish Immunol, 2015, 43(1): 241-248. doi: 10.1016/j.fsi.2014.12.031
    [72]
    ZHANG J C, HUANG X H, NI S W, et al. Grouper STAT1a is involved in antiviral immune response against iridovirus and nodavirus infection[J]. Fish Shellfish Immunol, 2017, 70: 351-360. doi: 10.1016/j.fsi.2017.09.030
    [73]
    WEI J G, XU D, ZHOU J G, et al. Molecular cloning, characterization and expression analysis of a C-type lectin (Ec-CTL) in orange-spotted grouper, Epinephelus coioides[J]. Fish Shellfish Immunol, 2010, 28(1): 178-186. doi: 10.1016/j.fsi.2009.10.020
    [74]
    JI H S, WEI J G, WEI S N, et al. Molecular cloning and expression of a C-type lectin-like protein from orange-spotted grouper Epinephelus coioides[J]. J Fish Biol, 2014, 84(2): 436-447. doi: 10.1111/jfb.2014.84.issue-2
    [75]
    CHEN X L, WEI J G, XU M, et al. Molecular cloning and characterization of a galectin-1 homolog in orange-spotted grouper, Epinephelus coioides[J]. Fish Shellfish Immunol, 2016, 54: 333-341. doi: 10.1016/j.fsi.2016.02.036
    [76]
    ZHOU JG, WEI JG, XU D, et al. Molecular cloning and characterization of two novel hepcidins from orange-spotted grouper, Epinephelus coioides[J]. Fish Shellfish Immunol, 2011, 30(2): 559-568. doi: 10.1016/j.fsi.2010.11.021
    [77]
    GUO M L, WEI J G, HUANG X H, et al. Antiviral effects of β-defensin derived from orange-spotted grouper (Epinephelus coioides)[J]. Fish Shellfish Immunol, 2012, 32(5): 828-838. doi: 10.1016/j.fsi.2012.02.005
    [78]
    WEI S N, HUANG Y H, CAI J, et al. Molecular cloning and characterization of c-type lysozyme gene in orange-spotted grouper, Epinephelus coioides[J]. Fish Shellfish Immunol, 2012, 33(2): 186-196. doi: 10.1016/j.fsi.2012.03.027
    [79]
    WEI S N, HUANG Y H, HUANG X H, et al. Molecular cloning and characterization of a new G-type lysozyme gene (Ec-lysG) in orange-spotted grouper, Epinephelus coioides[J]. Dev Comp Immunol, 2014, 46(2): 401-412. doi: 10.1016/j.dci.2014.05.006
    [80]
    OUYANG Z L, WANG P R, HUANG X H, et al. Immunogenicity and protective effects of inactivated Singapore grouper iridovirus (SGIV) vaccines in orange-spotted grouper, Epinephelus coioides[J]. Dev Comp Immunol, 2012, 38(2): 254-261. doi: 10.1016/j.dci.2012.07.004
    [81]
    OUYANG Z L, WANG P R, HUANGY H, et al. Selection and identification of Singapore grouper iridovirus vaccine candidate antigens using bioinformatics and DNA vaccination[J]. Vet Immunol Immunopathol, 2012, 149(1/2): 38-45.
  • Cited by

    Periodical cited type(26)

    1. 陈学深,熊悦淞,程楠,马旭,齐龙. 自适应振动式稻田株间柔性机械除草性能试验. 吉林大学学报(工学版). 2024(02): 375-384 .
    2. 桑世飞,孙晓涵,姚国琴,马腾云,章怡静,郑阳阳,丰柳春,姬生栋. 抗ALS抑制剂类除草剂分子标记的开发及应用. 中国稻米. 2024(04): 17-23 .
    3. 陈海荣,陈应海,车年萍,周绍琴,史扬杰. 适用于条播水稻机械除草作业的对行纠偏控制系统设计与试验. 农业装备技术. 2024(03): 41-44 .
    4. 胡钧烜,牛坡,郑岩,刘恩泽. 基于Matlab手扶式除草机振动分析及优化. 农业与技术. 2024(13): 52-57 .
    5. 何淑洁,孔德就,李鹏. 新能源农机装备的发展现状与趋势. 广西农学报. 2024(02): 68-75 .
    6. 杨颖,杨宁,邹世彦,张秀明,王明丽. 自走乘坐式水田除草机设计与试验. 农机市场. 2024(09): 56-58 .
    7. 李世柱,王立军. 机械除草技术装备应用调研及发展建议. 农业工程. 2024(09): 19-22 .
    8. 王文明,陶冶. 丘陵山区小型茶园除草机设计与试验. 中国农机装备. 2024(11): 86-89 .
    9. 陈佶,刘伟华. 稻田机械除草技术装备研究与应用现状. 农业工程. 2024(11): 17-22 .
    10. 靳文停,王深研,钱海峰,李文龙,杨家豪,马浏轩. 基于LS-DYNA的水田株间除草爪切削土壤仿真分析. 农机化研究. 2023(03): 203-209 .
    11. 马永明. 水稻插秧机的复合作业探索. 农机使用与维修. 2023(02): 27-30 .
    12. 李立军,黄福平,王烨. 割草无人车Web端管控系统设计. 数字通信世界. 2023(03): 191-193 .
    13. 赵前程. 辽宁沈阳地区水稻机械化优质栽培技术. 特种经济动植物. 2023(06): 128-130 .
    14. 赵晋,黄赟,翁晓星,刘丹,戴津婧. 水稻田间除草装备现状与分析. 农业开发与装备. 2023(06): 33-35 .
    15. 卢天妹. 智能化技术在水稻生产全程机械化中的应用研究与发展趋势. 农业工程技术. 2023(17): 31-32 .
    16. 焦晋康,胡炼,陈高隆,涂团鹏,王志敏,臧英. 水田行间除草装置设计与试验. 农业工程学报. 2023(24): 11-22 .
    17. 靳文停,周成,马浏轩,葛宜元. 有机稻田株间目标识别及机械除草技术综述. 农机化研究. 2022(08): 9-14 .
    18. 周志强. 水田机械除草技术的研究现状与发展趋势. 南方农机. 2022(05): 16-18+28 .
    19. 金佳俊,谢东升,邵圣乐,奚小波. 往复摆动式水田机械除草机的设计. 农业装备技术. 2022(02): 14-16 .
    20. 方会敏,牛萌萌,薛新宇,姬长英. 玉米田间机械-化学协同除草的杂草防除效果. 农业工程学报. 2022(06): 44-51 .
    21. 陈学深,方根杜,熊悦淞,王宣霖,武涛. 基于稻田除草部件横向偏距视觉感知的对行控制系统设计与试验. 华南农业大学学报. 2022(05): 83-91 . 本站查看
    22. 靳文停,葛宜元,樊文武,马浏轩,李文龙,杨荣敏. 倒V型稻田株间除草装置虚拟仿真及验证. 中国农机化学报. 2022(10): 72-77 .
    23. 唐伟,徐红星,董卉,杨永杰,郑承梅,陆永良. 我国水稻田除草剂同步用药现状与发展趋势. 杂草学报. 2022(02): 1-5 .
    24. 李姝然. 农田杂草机械化控制技术现状与特点. 农机使用与维修. 2022(11): 143-145 .
    25. 王金武,马骁驰,唐汉,王奇,吴亦鹏,张振江. 曲面轮齿斜置式稻田行间除草装置设计与试验. 农业机械学报. 2021(04): 91-100 .
    26. 王金峰,翁武雄,鞠金艳,陈鑫胜,王金武,王汉龙. 基于遥控转向的稻田行间除草机设计与试验. 农业机械学报. 2021(09): 97-105 .

    Other cited types(12)

Catalog

    Article views (1943) PDF downloads (3227) Cited by(38)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return