SUN Zhongxiang, SONG Yuanyuan, ZENG Rensen. Advances in studies on intraspecific and interspecific relationships mediated by plant volatiles[J]. Journal of South China Agricultural University, 2019, 40(5): 166-174. DOI: 10.7671/j.issn.1001-411X.201905078
    Citation: SUN Zhongxiang, SONG Yuanyuan, ZENG Rensen. Advances in studies on intraspecific and interspecific relationships mediated by plant volatiles[J]. Journal of South China Agricultural University, 2019, 40(5): 166-174. DOI: 10.7671/j.issn.1001-411X.201905078

    Advances in studies on intraspecific and interspecific relationships mediated by plant volatiles

    More Information
    • Received Date: May 30, 2019
    • Available Online: May 17, 2023
    • Plants release a variety of volatile organic compounds (VOCs) to mediate intra- and inter-specific interactions with other organisms in the surrounding environment. VOCs are involved in attracting pollinators and seed dispersers, protecting plants from invasion by herbivores, pathogens and parasites and so on. The study of plant volatiles, especially herbivore-induced plant volatiles, has been a research hotspot in the fields of chemical ecology and plant protection for nearly three decades. In this paper, recent advances in the study of plant volatiles-mediated intra- and inter-species relationships are reviewed. We summarized the basic characteristics of plant volatiles and their ecological roles in regulating intra- and inter-species plants, plant-insect, plant-herbivore-natural enemy tritrophic interactions and plant-microbe interactions. We also analyzed the application and prospect of plant volatiles in agricultural production, summarized the unresolved issues in this field and discussed the issues for further research, so as to provide a theoretical basis for the application of plant volatiles in pest control.

    • [1]
      MARCO D A, TURLINGS T C J. Advances and challenges in the identification of volatiles that mediate interactions among plants and arthropods[J]. Analyst, 2005, 131(1): 24-32.
      [2]
      DUDAREVA N, PICHERSKY E, DUDAREVA N, et al. Biology of floral scent[M]. CRC press online, 2006.
      [3]
      DUDAREVA N, PICHERSKY E, GERSHENZON J. Biochemistry of plant volatiles[J]. Plant Physiol, 2004, 135(4): 1893-1902. doi: 10.1104/pp.104.049981
      [4]
      TURLINGS T C, TUMLINSON J H, LEWIS W J. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps[J]. Science, 1990, 30(250): 1251-1253.
      [5]
      宋晓君, 唐超, 覃伟权, 等. 虫害诱导植物挥发物的释放机制及应用[J]. 中国农学通报, 2009, 25(13): 161-165.
      [6]
      娄永根, 程家安. 虫害诱导的植物挥发物: 基本特性、生态学功能及释放机制[J]. 生态学报, 2000, 20(6): 1097-1106. doi: 10.3321/j.issn:1000-0933.2000.06.031
      [7]
      郝娅, 娄永根. 虫害诱导植物挥发物的研究进展[J]. 长江大学学报(自然科学版), 2013, 11: 12-15. doi: 10.3969/j.issn.1673-1409.2013.03.006
      [8]
      KHAN Z R, AMPONGNYARKO K, CHILISWA P, et al. Intercropping increases parasitism of pests[J]. Nature, 1997, 388: 631-632.
      [9]
      RASMANN S, KÖLLNER T G, DEGENHARDT J, et al. Recruitment of entomopathogenic nematodes by insect-damaged maize roots[J]. Nature, 2005, 434(7034): 732-737. doi: 10.1038/nature03451
      [10]
      PICKETT J A, KHAN Z R. Plant volatile-mediated signalling and its application in agriculture: Successes and challenges[J]. New Phytol, 2016, 212(4): 856-870. doi: 10.1111/nph.14274
      [11]
      REINHARD J, SRINIVASAN M V, ZHANG S. Olfaction: Scent-triggered navigation in honeybees[J]. Nature, 2004, 427: 411.
      [12]
      DUDAREVA N, NEGRE F, NAGEGOWDA D A, et al. Plant volatiles: Recent advances and future perspectives[J]. Crit Rev Plant Sci, 2006, 25(5): 417-440. doi: 10.1080/07352680600899973
      [13]
      KAORI S, KYUTARO K, RIKA O, et al. Changing green leaf volatile biosynthesis in plants: An approach for improving plant resistance against both herbivores and pathogens[J]. Proc Natl Acad Sci USA, 2006, 103(45): 16672-16676. doi: 10.1073/pnas.0607780103
      [14]
      YI H S, HEIL M, ADAME-ÁLVAREZ R M, et al. Airborne Induction and priming of plant defenses against a bacterial pathogen[J]. Plant Physiol, 2010, 151(5): 2152-2161.
      [15]
      VEYRAT N, ROBERT C A M, TURLINGS T C J, et al. Herbivore intoxication as a potential primary function of an inducible volatile plant signal[J]. J Ecol, 2016, 104(2): 591-600. doi: 10.1111/1365-2745.12526
      [16]
      VON MÉREY G E, VEYRAT N, D'ALESSANDRO M, et al. Herbivore-induced maize leaf volatiles affect attraction and feeding behavior of Spodoptera littoralis caterpillars[J]. Front Plant Sci, 2013, 4: 209.
      [17]
      IRMISCH S, CLAVIJO MCCORMICK A, GÜNTHER J, et al. Herbivore-induced poplar cytochrome P450 enzymes of the CYP71 family convert aldoximes to nitriles which repel a generalist caterpillar[J]. Plant J, 2014, 80(6): 1095-1107. doi: 10.1111/tpj.12711
      [18]
      VET L E, DICKE M. Ecology of infochemical use by natural enemies in a tritrophic context[J]. Annu Rev Entomol, 1992, 37(1): 141-172. doi: 10.1146/annurev.en.37.010192.001041
      [19]
      DANNER H, DESURMONT G A, CRISTESCU S M, et al. Herbivore-induced plant volatiles accurately predict history of coexistence, diet breadth, and feeding mode of herbivores[J]. New Phytol, 2018, 220: 726-738. doi: 10.1111/nph.14428
      [20]
      XU H, DESURMONT G, DEGEN T, et al. Combined use of herbivore ‐ induced plant volatiles and sex pheromones for mate location in braconid parasitoids[J]. Plant Cell Environ, 2017, 40(3): 330-339. doi: 10.1111/pce.12818
      [21]
      ENGELBERTH J, ALBORN H T, SCHMELZ E A, et al. Airborne signals prime plants against insect herbivore attack[J]. Proc Natl Acad Sci USA, 2004, 101(6): 1781-1785. doi: 10.1073/pnas.0308037100
      [22]
      ERB M, VEYRAT N, ROBERT C A, et al. Indole is an essential herbivore-induced volatile priming signal in maize[J]. Nat Commun, 2015, 6: 6273. doi: 10.1038/ncomms7273
      [23]
      SUGIMOTO K, MATSUI K, IIJIMA Y, et al. Intake and transformation to a glycoside of (Z)-3-hexenol from infested neighbors reveals a mode of plant odor reception and defense[J]. Proc Natl Acad Sci USA, 2014, 111(19): 7144-7149. doi: 10.1073/pnas.1320660111
      [24]
      DICKE M, BALDWIN I T. The evolutionary context for herbivore-induced plant volatiles: Beyond the ‘cry for help’[J]. Trends Plant Sci, 2010, 15(3): 167-175. doi: 10.1016/j.tplants.2009.12.002
      [25]
      ZHU-SALZMAN K, ZENG R. Insect response to plant defensive protease inhibitors[J]. Annu Rev Entomol, 2015, 60: 233-252. doi: 10.1146/annurev-ento-010814-020816
      [26]
      BASS C, ZIMMER C T, RIVERON J M, et al. Gene amplification and microsatellite polymorphism underlie a recent insect host shift[J]. Proc Natl Acad Sci USA, 2013, 110(48): 19460-19465. doi: 10.1073/pnas.1314122110
      [27]
      DESPRÉS L, DAVID J-P, GALLET C. The evolutionary ecology of insect resistance to plant chemicals[J]. Trends Ecol Evol, 2007, 22(6): 298-307. doi: 10.1016/j.tree.2007.02.010
      [28]
      HEIDEL-FISCHER H M, VOGEL H. Molecular mechanisms of insect adaptation to plant secondary compounds[J]. Curr Opin Insect Sci, 2015, 8: 8-14. doi: 10.1016/j.cois.2015.02.004
      [29]
      BERNASCONI M L, TCJ T, AMBROSETTI L, et al. Herbivore-induced emissions of maize volatiles repel the corn leaf aphid, Rhopalosiphum maidis[J]. Entomol Exp Appl, 1998, 87(2): 133-142. doi: 10.1046/j.1570-7458.1998.00315.x
      [30]
      DE MORAES C M, MESCHER M C, TUMLINSON J H. Caterpillar-induced nocturnal plant volatiles repel conspecific females[J]. Nature, 2001, 410: 577-580. doi: 10.1038/35069058
      [31]
      ANASTASAKI E, DRIZOU F, MILONAS P G. Electrophysiological and oviposition responses of tuta absoluta females to herbivore-induced volatiles in tomato plants[J]. J Chem Ecol, 2018, 44(3): 1-11.
      [32]
      FRAGO E, MALA M, WELDEGERGIS B T, et al. Symbionts protect aphids from parasitic wasps by attenuating herbivore-induced plant volatiles[J]. Nat Commun, 2017, 8: 1860. doi: 10.1038/s41467-017-01935-0
      [33]
      OLLERTON J, WINFREE R, TARRANT S. How many flowering plants are pollinated by animals?[J]. Oikos, 2011, 120(3): 321-326. doi: 10.1111/more.2010.120.issue-3
      [34]
      KNUDSEN J, ERIKSSON R, GERSHENZON J, et al. Diversity and distribution of floral scent[J]. Bot Rev, 2006, 72(1): 1-120. doi: 10.1663/0006-8101(2006)72[1:DADOFS]2.0.CO;2
      [35]
      DOBSON H E M. Relationship between floral fragrance composition and type of pollinator[M]//DUDAREVA N, PICHERSKY E, DVDAREVA N, et al. Biology of floral scent. CRC press online. 2006: 161-212.
      [36]
      VON H O, BESTMANN H W L. Sulphur-containing “perfumes” attract flower-visiting bats[J]. J Comp Physiol A, 2000, 186(2): 143-153.
      [37]
      GRÜTER C, RATNIEKS F L W. Flower constancy in insect pollinators: Adaptive foraging behaviour or cognitive limitation?[J]. Commun Integr Biol, 2011, 4(6): 633-636. doi: 10.4161/cib.16972
      [38]
      NATALIA D, ANTJE K, MUHLEMANN J L K, et al. Biosynthesis, function and metabolic engineering of plant volatile organic compounds[J]. New Phytol, 2013, 198(1): 16-32. doi: 10.1111/nph.12145
      [39]
      AYASSE M, STÖKL J, FRANCKE W. Chemical ecology and pollinator-driven speciation in sexually deceptive orchids[J]. Phytochemistry, 2011, 72(13): 1667-1677. doi: 10.1016/j.phytochem.2011.03.023
      [40]
      SCHIESTL F P. On the success of a swindle: Pollination by deception in orchids[J]. Naturwissenschaften, 2005, 92(6): 255-264. doi: 10.1007/s00114-005-0636-y
      [41]
      JUNKER R R, GERSHENZON J, UNSICKER S B. Floral odor bouquetloses its ant repellent properties after inhibition of terpene biosynthesis[J]. J Chem Ecol, 2011, 37(12): 1323-1331. doi: 10.1007/s10886-011-0043-0
      [42]
      KESSLER D, BING J, HAVERKAMP A, et al. The defensive function of a pollinator ‐ attracting floral volatile[J]. Funct Ecol, 2019. doi: 10.1111/1365-2435.13332.
      [43]
      ZHOU W, KÜGLER A, MCGALE E, et al. Tissue-specific emission of (E)-α-bergamotene helps resolve the dilemma when pollinators are also herbivores[J]. Curr Biol, 2017, 27(9): 1336-1341. doi: 10.1016/j.cub.2017.03.017
      [44]
      HABER A I, SIMS J W, MESCHER M C, et al. A key floral scent component (β ‐ trans ‐ bergamotene) drives pollinator preferences independently of pollen rewards in seep monkey flower[J]. Funct Ecol, 2019, 33(2): 218-228. doi: 10.1111/fec.2019.33.issue-2
      [45]
      BALDWIN I T, HALITSCHKE R A, VON DAHL C C, et al. Volatile signaling in plant-plant interactions: “Talking trees” in the genomics era[J]. Science, 2006, 311(5762): 812-815. doi: 10.1126/science.1118446
      [46]
      MARTIN H, RICHARD K. Explaining evolution of plant communication by airborne signals[J]. Trends Ecol Evol, 2010, 25(3): 137-144. doi: 10.1016/j.tree.2009.09.010
      [47]
      BRUCE T J A, MATTHES M C, KEITH C, et al. cis-Jasmone induces Arabidopsis genes that affect the chemical ecology of multitrophic interactions with aphids and their parasitoids[J]. Proc Natl Acad Sci USA, 2008, 105(12): 4553-4558. doi: 10.1073/pnas.0710305105
      [48]
      FROST C J, APPEL H M, CARLSON J E, et al. Within-plant signalling via volatiles overcomes vascular constraints on systemic signalling and primes responses against herbivores[J]. Ecol Lett, 2010, 10(6): 490-498.
      [49]
      ERB M, VEYRAT N, ROBERT C A, et al. Indole is an essential herbivore-induced volatile priming signal in maize[J]. Nat Commun, 2015, 6(6273): 6273.
      [50]
      HUI C, A DANIEL J, HOWE G A. Constitutive activation of the jasmonate signaling pathway enhances the production of secondary metabolites in tomato[J]. FEBS Lett, 2006, 580(11): 2540-2546. doi: 10.1016/j.febslet.2006.03.070
      [51]
      SHULAEV V, SILVERMAN P, RASKIN I. Airborne signalling by methyl salicylate in plant pathogen resistance[J]. Nature, 1997, 385(6618): 718-721. doi: 10.1038/385718a0
      [52]
      YAN Z G, WANG C Z. Wound-induced green leaf volatiles cause the release of acetylated derivatives and a terpenoid in maize[J]. Phytochemistry, 2006, 67(1): 34-42. doi: 10.1016/j.phytochem.2005.10.005
      [53]
      RUTHER J, KLEIER S. Plant–plant signaling: Ethylene synergizes volatile emission in Zea mays induced by exposure to (Z)-3-hexen-1-ol[J]. J Chem Ecol, 2005, 31(9): 2217-2222. doi: 10.1007/s10886-005-6413-8
      [54]
      ARIMURA G, OZAWA R, SHIMODA T, et al. Herbivory-induced volatiles elicit defence genes in lima bean leaves[J]. Nature, 2000, 406(6795): 512-515. doi: 10.1038/35020072
      [55]
      ANDRÉ K, RAYKO H, CELIA D, et al. Priming of plant defense responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuata[J]. Oecologia, 2006, 148(2): 280-292. doi: 10.1007/s00442-006-0365-8
      [56]
      BALDWIN I T, SCHULTZ J C. Rapid changes in tree leaf chemistry induced by damage: Evidence for communication between plants[J]. Science, 1983, 221(4607): 277-279. doi: 10.1126/science.221.4607.277
      [57]
      FANG T, ZHAO W L, GAO X W. Communication between plants: Induced resistance in poplar seedlings following herbivore infestation, mechanical wounding, and volatile treatment of the neighbors[J]. Entomol Exp Appl, 2013, 149(2): 110-117.
      [58]
      CHOH Y, KUGIMIYA S, TAKABAYASHI J. Induced production of extrafloral nectar in intact lima bean plants in response to volatiles from spider mite-infested conspecific plants as a possible indirect defense against spider mites[J]. Oecologia, 2006, 147(3): 455-460. doi: 10.1007/s00442-005-0289-8
      [59]
      BRUIN J, DICKE M, SABELIS M W. Plants are better protected against spider-mites after exposure to volatiles from infested conspecifics[J]. Experientia, 1992, 48(5): 525-529. doi: 10.1007/BF01928181
      [60]
      王杰, 宋圆圆, 胡林, 等. 植物抗虫“防御警备”: 概念、机理与应用[J]. 应用生态学报, 2018, 29(6): 2068-2078.
      [61]
      FROST C J, MESCHER M C, CARLSON J E, et al. Plant defense priming against herbivores: Getting ready for a different battle[J]. Plant Physiol, 2008, 146(3): 818-824. doi: 10.1104/pp.107.113027
      [62]
      FARMER E E, RYAN C A. Interplant communication: Airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves[J]. Proc Natl Acad Sci USA, 1990, 87(19): 7713-7716. doi: 10.1073/pnas.87.19.7713
      [63]
      KARBAN R, BALDWIN I T, BAXTER K J. Communication between plants: induced resistance in wild tobacco plants following clipping of neighboring sagebrush[J]. Oecologia, 2000, 125(1): 66-71. doi: 10.1007/PL00008892
      [64]
      KARBAN R, MARON J. The fitness consequences of interspecific eavesdropping between plants[J]. Ecology, 2002, 83(5): 1209-1213. doi: 10.1890/0012-9658(2002)083[1209:TFCOIE]2.0.CO;2
      [65]
      APPEL H M, COCROFT R B. Plants respond to leaf vibrations caused by insect herbivore chewing[J]. Oecologia, 2014, 175(4): 1257-1266. doi: 10.1007/s00442-014-2995-6
      [66]
      HALL D E, MACGREGOR K B, NIJSSE J, et al. Footsteps from insect larvae damage leaf surfaces and initiate rapid responses[J]. Eur J Plant Pathol, 2004, 110(4): 441-447. doi: 10.1023/B:EJPP.0000021072.89968.de
      [67]
      HILKER M, FATOUROS N E. Plant responses to insect egg deposition[J]. Annu Rev Entomol, 2015, 60(1): 493-515. doi: 10.1146/annurev-ento-010814-020620
      [68]
      KESSLER A, BALDWIN I T. Defensive function of herbivore-induced plant volatile emissions in nature[J]. Science, 2001, 291(5511): 2141-2144. doi: 10.1126/science.291.5511.2141
      [69]
      王国昌, 孙晓玲, 董文霞, 等. 虫害诱导挥发物的生态调控功能[J]. 生态学报, 2010, 30(24): 7016-7028.
      [70]
      严善春, 徐伟, 袁红娥, 等. 不同诱导因子对落叶松毛虫嗅觉和产卵选择的影响[J]. 应用生态学报, 2007, 18(7): 1583-1588. doi: 10.3321/j.issn:1001-9332.2007.07.029
      [71]
      CARROLL M J, SCHMELZ E A, TEAL P E. The attraction of Spodoptera frugiperda neonates to cowpea seedlings is mediated by volatiles induced by conspecific herbivory and the elicitor inceptin[J]. J Chem Ecol, 2008, 34(3): 291-300. doi: 10.1007/s10886-007-9414-y
      [72]
      YE M, VEYRAT N, XU H, et al. An herbivore-induced plant volatile reduces parasitoid attraction by changing the smell of caterpillars[J]. Sci Adv, 2018, 4(5): 4767. doi: 10.1126/sciadv.aar4767
      [73]
      STEINBERG S, DICKE M, VET L E. Relative importance of infochemicals from first and second trophic level in long-range host location by the larval parasitoidCotesia glomerata[J]. J Chem Ecol, 1993, 19(1): 47-59. doi: 10.1007/BF00987470
      [74]
      DEGENHARDT J, GERSHENZON J, BALDWIN I T, et al. Attracting friends to feast on foes: Engineering terpene emission to make crop plants more attractive to herbivore enemies[J]. Curr Opin Biotechnol, 2003, 14(2): 169-176. doi: 10.1016/S0958-1669(03)00025-9
      [75]
      KAPPERS I F, ASAPH A, HERPEN T W J M, et al. Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis[J]. Science, 2005, 309: 2070-2072. doi: 10.1126/science.1116232
      [76]
      CLAVIJO MCCORMICK A, GERSHENZON J, UNSICKER S B. Little peaks with big effects: Establishing the role of minor plant volatiles in plant-insect interactions[J]. Plant Cell Environ, 2014, 37(8): 1836-1844. doi: 10.1111/pce.12357
      [77]
      BROWN G C, PROCHASKA G L, HILDEBRAND D F, et al. Green leaf volatiles inhibit conidial germination of the entomopathogen Pandora neoaphidis (Entomopthorales: Entomophthoraceae)[J]. Environ Entomol, 1995, 24(6): 1637-1643. doi: 10.1093/ee/24.6.1637
      [78]
      FRIEDMAN M, HENIKA P R, MANDRELL R E. Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica[J]. J Food Prot, 2002, 65(10): 1545-1560. doi: 10.4315/0362-028X-65.10.1545
      [79]
      HAMMER K, CARSON C, RILEY T. Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil[J]. J Appl Microbiol, 2003, 95(4): 853-860. doi: 10.1046/j.1365-2672.2003.02059.x
      [80]
      HUANG M, SANCHEZ ‐ MOREIRAS A M, ABEL C, et al. The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E) ‐ β ‐ caryophyllene, is a defense against a bacterial pathogen[J]. New Phytol, 2012, 193(4): 997-1008. doi: 10.1111/j.1469-8137.2011.04001.x
      [81]
      YI H S, RYU C M, HEIL M. Sweet smells prepare plants for future stress: Airborne induction of plant disease immunity[J]. Plant Signal Behav, 2010, 5(5): 528-531. doi: 10.4161/psb.10984
      [82]
      KISHIMOTO K, MATSUI K, OZAWA R, et al. Volatile C6-aldehydes and allo-ocimene activate defense genes and induce resistance against Botrytis cinerea in Arabidopsis thaliana[J]. Plant Cell Physiol, 2005, 46(7): 1093-1102. doi: 10.1093/pcp/pci122
      [83]
      LIN Y, QASIM M, HUSSAIN M, et al. The herbivore-induced plant volatiles methyl salicylate and menthol positively affect growth and pathogenicity of entomopathogenic fungi[J]. Sci Rep, 2017, 7: 40494. doi: 10.1038/srep40494
      [84]
      LIN Y, HUSSAIN M, AVERY P B, et al. Volatiles from plants induced by multiple aphid attacks promote conidial performance of Lecanicillium lecanii[J]. PLoS One, 2016, 11(3): e0151844. doi: 10.1371/journal.pone.0151844
      [85]
      JAMES D G. Synthetic herbivore-induced plant volatiles as field attractants for beneficial insects[J]. Environ Entomol, 2003, 32(5): 977-982. doi: 10.1603/0046-225X-32.5.977
      [86]
      YU H, ZHANG Y, WU K, et al. Field-testing of synthetic herbivore-induced plant volatiles as attractants for beneficial insects[J]. Environ Entomol, 2008, 37(6): 1410-1415. doi: 10.1603/0046-225X-37.6.1410
      [87]
      MA B, CA C, K C, et al. New roles for cis-jasmone as an insect semiochemical and in plant defense[J]. Proc Natl Acad Sci USA, 2000, 97(16): 9329-9334. doi: 10.1073/pnas.160241697
      [88]
      DICKE M, GOLS R, LUDEKING D, et al. Jasmonic acid and herbivory differentially induce carnivore-attracting plant volatiles in lima bean plants[J]. J Chem Ecol, 1999, 25(8): 1907-1922. doi: 10.1023/A:1020942102181
      [89]
      PICKETT J A, WOODCOCK C M, MIDEGA C A, et al. Push-pull farming systems[J]. Curr Opin Biotechnol, 2014, 26(4): 125-132.
      [90]
      KHAN Z R, PICKETT J A, WADHAMS L, et al. Habitat management strategies for the control of cereal stemborers and striga in maize in Kenya[J]. Int J Trop Insect Sci, 2001, 21(4): 375-380. doi: 10.1017/S1742758400008481
      [91]
      WANG E , WANG R, DEPARASLS J, et al. Suppression of a P450 hydroxylase gene in plant trichome glands enhances natural-product-based aphid resistance[J]. Nat Biotechnol, 2001, 19(4): 371-374. doi: 10.1038/86770
      [92]
      ASAPH A, GIRI A P, STEPHAN D, et al. Terpenoid metabolism in wild-type and transgenic Arabidopsis plants[J]. Plant Cell, 2003, 15(12): 2866-2884. doi: 10.1105/tpc.016253
      [93]
      AARTSMA Y, BIANCHI F J, VAN D W W, et al. Herbivore-induced plant volatiles and tritrophic interactions across spatial scales[J]. New Phytol, 2017, 216(4): 1054-1063. doi: 10.1111/nph.14475
      [94]
      ENGELBERTH J. Plant resistance to insect herbivory[J]. Biocommunication Plants, 2012, 14: 303-326. doi: 10.1007/978-3-642-23524-5
      [95]
      黄安平. 虫害诱导植物挥发物介导的植物种内化学通信研究[J]. 湖南农业科学, 2014, 8: 6-7. doi: 10.3969/j.issn.1006-060X.2014.04.002
    • Related Articles

      [1]PENG Haifeng, CHEN Xionghui, GE Yanyan, WAN Banghui. A comparative study on the low temperature tolerability of different photo-thermo sensitive genic male sterile lines in rice[J]. Journal of South China Agricultural University, 2016, 37(1): 14-19. DOI: 10.7671/j.issn.1001-411X.2016.01.003
      [2]JIANG Da-gang,FU Xiao,LIU Zhong-yu,ZHUANG Chu-xiong. The genetic transformation of thermo-sensitive male sterile rice mediated by TAC vector[J]. Journal of South China Agricultural University, 2005, 26(3): 52-55. DOI: 10.7671/j.issn.1001-411X.2005.03.015
      [3]Studies on Tissue Culture Characteristics of Several Photoperiod-Temperature Sensitive Genic Male Sterile Rice[J]. Journal of South China Agricultural University, 2003, 24(2): 45-47. DOI: 10.7671/j.issn.1001-411X.2003.02.013
      [4]CHEN Xiong hui 1,WAN Bang hui 1,LU Yan peng 1,PENG Hai feng 2,LIANG Ke qin 1,ZHAO Jing 1. Studies on Outcrossing-Seedy Potentialities of Photo-Thermo Sensitive Genic Male Sterile Rice[J]. Journal of South China Agricultural University, 2001, 22(1): 1-4. DOI: 10.7671/j.issn.1001-411X.2001.01.002
      [5]LIAO Yi-long,WAN Bang-hui. The Allelism of Photo-Thermo-Sensitive Genic Male Sterile Genes of Indica Rice[J]. Journal of South China Agricultural University, 2000, (3): 1-4,16. DOI: 10.7671/j.issn.1001-411X.2000.03.001
      [6]STUDY ON SENSITIVITY OF THE FERTILITY OF PHOTOPERIOD-TEMPERATURE SENSITIVE GENIC MALE STERILE LINES OF RICE TO PHOTO AND THERMO REPONSES[J]. Journal of South China Agricultural University, 1997, (4): 8-11.
      [7]Wan Banghui Ma Haifeng. STUDIES ON THE INHERITANCE OF THREE TYPES GERMPLASM IN PHOTO-THERMO SENSITIVE GENIC MALE STERILE RICE[J]. Journal of South China Agricultural University, 1997, (2): 1-6.
      [8]Chen Xionghui,Wan Banghui,Wu Changwei, Liang Keqin. STUDY ON THE FLOWERING HABIT OF PHOTO-THERMO SENSITIVE GENIC MALES STERILE RICE[J]. Journal of South China Agricultural University, 1996, (2): 1-6.
      [9]Che Xionghui, Wan Banghui, Chen Weidong, Liang Keqin. TEMPERATURE-SENSITIVE STAGE OF PHOTOPEKIOD AND THERMOPERIOD SENSITIVE GENIC MALE-STERILE LINE IN RICE[J]. Journal of South China Agricultural University, 1996, (1): 96-101.
      [10]Wan Banghui, Deng Guofu. OBSERVATION ON INDIVIDUAL FERTILITY OF THE PHOTOPERIOD-TEMPERATURE SENSITIVE GENIC MALE STERILE LINES OF RICE[J]. Journal of South China Agricultural University, 1995, (1): 7-12.
    • Cited by

      Periodical cited type(1)

      1. 王亚琴. 食品中致病微生物的检测方法研究. 食品安全导刊. 2025(11): 131-133 .

      Other cited types(0)

    Catalog

      Article views (2014) PDF downloads (2654) Cited by(1)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return