Citation: | LI Jianguo, WANG Huicong, ZHOU Biyan, et al. Research advances in physiology and molecular biology of flower and fruit development in litchi[J]. Journal of South China Agricultural University, 2019, 40(5): 119-127. DOI: 10.7671/j.issn.1001-411X.201905076 |
Litchi (Litchi chinensis) is native to South China and is the most distinctive fruit crop in China. Flower and fruit development, which play decisive roles in litchi yield and fruit quality formation, are the main contents of litchi biological research. In this paper, we make an overview on the progress in understanding the physiological and molecular mechanisms of the flower bud differentiation, fruit abscission, fruit cracking and fruit quality (including fruit and seed size, pericarp color, sugar and acid metabolism) formation of litchi, and give the prospects of future research directions.
[1] |
MENZEL C M. The control of floral initiation in lychee: A review[J]. Sci Hortic, 1983, 21(3): 201-215. doi: 10.1016/0304-4238(83)90093-6
|
[2] |
肖华山, 吕柳新. 荔枝花芽和花性别分化研究进展[J]. 福建农林大学学报, 2002, 31(3): 334-338. doi: 10.3969/j.issn.1671-5470.2002.03.016
|
[3] |
陈厚彬, 苏钻贤, 张荣, 等. 荔枝花芽分化研究进展[J]. 中国农业科学, 2014, 47(9): 1774-1783. doi: 10.3864/j.issn.0578-1752.2014.09.012
|
[4] |
黄辉白. 具假种皮(荔枝、龙眼)果实生理研究进展[J]. 园艺学年评, 1995, 1: 107-120.
|
[5] |
李建国, 黄辉白. 荔枝裂果研究进展[J]. 果树学报, 1996(4): 257-261.
|
[6] |
LI J G, HUANG X M, HUANG H B, et al. An overview of factors related to fruit size in Litchi chinensis Sonn.[J]. Acta Hortic, 2010, 863(863): 477-482.
|
[7] |
陈厚彬, 黄辉白. 以阶段观剖视荔枝的花芽分化[J]. 果树学报, 2003, 14(136): 12-13.
|
[8] |
CHEN H B, HUANG H B. Low temperature requirements for floral induction in lychee[J]. Acta Hortic, 2005, 665(665): 195-202.
|
[9] |
陈厚彬, 黄辉白, 刘宗莉. 荔枝树成花与碳水化合物器官分布的关系研究[J]. 园艺学报, 2004, 31(1): 1-6. doi: 10.3321/j.issn:0513-353X.2004.01.001
|
[10] |
YANG H F, KIM H J, CHEN H B, et al. Carbohydrate accumulation and flowering-related gene expression levels at different developmental stages of terminal shoots in Litchi chinensis[J]. HortScience, 2014, 49(11): 1381-1391. doi: 10.21273/HORTSCI.49.11.1381
|
[11] |
张红娜, 苏钻贤, 陈厚彬. 荔枝花芽分化期间光合特性与碳氮物质变化[J]. 热带农业科学, 2016, 36(11): 66-71.
|
[12] |
ZHANG H N, WEI Y Z, SHEN J Y, et al. Transcriptomic analysis of floral initiation in litchi (Litchi chinensis Sonn.) based on de novo RNA sequencing[J]. Plant Cell Rep, 2014, 33(10): 1723-1735. doi: 10.1007/s00299-014-1650-3
|
[13] |
SHEN J Y, XIAO Q S, QIU H J, et al. Integrative effect of drought and low temperature on litchi (Litchi chinensis Sonn.) floral initiation revealed by dynamic genome-wide transcriptome analysis[J]. Sci Rep, 2016, 6: 32005. doi: 10.1038/srep32005
|
[14] |
LU X Y, LI J J, CHEN H B, et al. RNA-seq analysis of apical meristem reveals integrative regulatory network of ROS and chilling potentially related to flowering in Litchi chinensis[J]. Sci Rep, 2017, 7: 10183. doi: 10.1038/s41598-017-10742-y
|
[15] |
DING F, ZHANG S W, CHEN H B, et al. Promoter difference of LcFT1 is a leading cause of natural variation of flowering timing in different litchi cultivars (Litchi chinensis Sonn.)[J]. Plant Sci, 2015, 241: 128-137. doi: 10.1016/j.plantsci.2015.10.004
|
[16] |
XIAO Q S, SU Z X, CHEN H B, et al. Genome-wide identification and involvement of litchi SPL genes in flowering in response to cold and leaf maturity[J]. J Hortic Sci Biotech, 2019, 94(4): 428-440. doi: 10.1080/14620316.2018.1543557
|
[17] |
ZHOU B Y, CHEN H B, HUANG X M, et al. Rudimentary leaf abortion with the development of panicle in litchi: Changes in ultrastructure, antioxidant enzymes and phytohormones[J]. Sci Hortic, 2008, 117(3): 288-296. doi: 10.1016/j.scienta.2008.04.004
|
[18] |
ZHOU B, LI N, ZHANG Z, et al. Hydrogen peroxide and nitric oxide promote reproductive growth in Litchi chinensis[J]. Biol Plantarum, 2012, 56(2): 321-329. doi: 10.1007/s10535-012-0093-3
|
[19] |
LIU W W, KIM H J, CHEN H B, et al. Identification of MV-generated ROS responsive EST clones in floral buds of Litchi chinensis Sonn.[J]. Plant Cell Rep, 2013, 32(9): 1361-1372. doi: 10.1007/s00299-013-1448-8
|
[20] |
LIU W W, CHEN H B, LU X Y, et al. Identification of nitric oxide responsive genes in the floral buds of Litchi chinensis[J]. Biol Plantarum, 2018, 59(1): 115-122.
|
[21] |
LU X Y, KIM H J, ZHONG S L, et al. De novo transcriptome assembly for rudimentary leaves in Litchi chinensis Sonn. and identification of differentially expressed genes in response to reactive oxygen species[J]. BMC Genomics, 2014, 15(1): 805. doi: 10.1186/1471-2164-15-805
|
[22] |
WANG C C, LÜ P T, ZHONG S L, et al. LcMCII-1 is involved in the ROS-dependent senescence of the rudimentary leaves of Litchi chinensis[J]. Plant Cell Rep, 2017, 36(1): 89-102.
|
[23] |
DING F, ZHANG S W, CHEN H B, et al. Functional analysis of a homologue of the FLORICAULA/LEAFY gene in litchi (Litchi chinensis Sonn.) revealing its significance in early flowering process[J]. Genes Genom, 2018, 40(12): 1259-1267. doi: 10.1007/s13258-018-0739-4
|
[24] |
CUI Z, ZHOU B, ZHANG Z, et al. Abscisic acid promotes flowering and enhances LcAP1 expression in Litchi chinensis Sonn.[J]. S Afr J Bot, 2013, 88(9): 76-79.
|
[25] |
HUANG H B, XU J K. The developmental patterns of fruit tissue and their correlative relationships in Litchi chinensis Sonn.[J]. Sci Hortic, 1983, 19(3): 335-342.
|
[26] |
邱云霞, 黄辉白. 荔枝果实发育的研究Ⅱ: 干鲜重变化动态和水分与溶质的进入与分配[J]. 园艺学报, 1986(2): 81-86.
|
[27] |
HUANG H B, QIU Y X. Growth correlations and assimilate partitioning in the arillate fruit of Litchi chinensis Sonn.[J]. Funct Plant Biol, 1987, 14(2): 181. doi: 10.1071/PP9870181
|
[28] |
李建国, 黄辉白, 黄旭明. 荔枝果实发育时期的新划分[J]. 园艺学报, 2003, 30(3): 307-310. doi: 10.3321/j.issn:0513-353X.2003.03.013
|
[29] |
李建国, 黄辉白, 刘向东. 荔枝果皮发育细胞学研究[J]. 园艺学报, 2003, 30(1): 23-28. doi: 10.3321/j.issn:0513-353X.2003.01.006
|
[30] |
李建国, 黄旭明, 黄辉白, 等. 大果型和小果型荔枝品种果实发育细胞学和生理学比较[J]. 果树学报, 2002, 19(3): 158-162.
|
[31] |
李建国, 黄辉白, 黄旭明. 妃子笑荔枝早花果和晚花果大小不同与温度的关系[J]. 果树学报, 2004, 21(1): 37-41.
|
[32] |
李建国, 黄辉白, 黄旭明. 妃子笑荔枝早花大果和晚花小果与营养竞争的关系[J]. 果树学报, 2003, 20(3): 195-198.
|
[33] |
李建国, 周碧燕, 黄旭明, 等. ‘妃子笑’荔枝不同花期果实大小与激素含量的关系[J]. 园艺学报, 2004, 31(1): 73-75. doi: 10.3321/j.issn:0513-353X.2004.01.016
|
[34] |
XIA R, LI C Q, LU W J, et al. 3-Hydroxy-3-methylglutaryl coenzyme A reductase 1 (HMG1) is highly associated with the cell division during the early stage of fruit development which determines the final fruit size in Litchi chinensis[J]. Gene, 2012, 498(1): 28-35. doi: 10.1016/j.gene.2012.01.079
|
[35] |
吕柳新, 陈荣木, 陈景渌. 荔枝胚胎发育过程的观察[J]. 亚热带植物科学, 1985, 14(1): 3-7.
|
[36] |
叶明志, 吕柳新. 荔枝幼果内源生长调节物的消长与胚胎发育的关系[J]. 福建农学院学报, 1990(3): 268-272.
|
[37] |
陈伟, 吕柳新, 叶陈亮, 等. 荔枝胚胎败育与胚珠内源激素关系的研究[J]. 热带作物学报, 2000, 21(3): 34-38. doi: 10.3969/j.issn.1000-2561.2000.03.007
|
[38] |
李建国, 周碧燕. 大核和焦核“桂味”荔枝果实发育及其发育期间果皮中内源激素含量的变化比较[J]. 植物生理学报, 2005, 41(5): 587-590.
|
[39] |
李建国, 黄辉白. 荔枝液态胚乳对果实生长和脱落的影响[J]. 园艺学报, 2006, 33(1): 23-27. doi: 10.3321/j.issn:0513-353X.2006.01.005
|
[40] |
PATHAK A K, SINGH S P, GUPTA Y, et al. Transcriptional changes during ovule development in two genotypes of litchi (Litchi chinensis Sonn.) with contrast in seed size[J]. Sci Rep, 2016, 6: 36304. doi: 10.1038/srep36304
|
[41] |
ZHANG J Q, WU Z C, HU F C, et al. Aberrant seed development in Litchi chinensis is associated with the impaired expression of cell wall invertase genes[J]. Hortic Res, 2018, 5(1): 39. doi: 10.1038/s41438-018-0042-1
|
[42] |
XIE D R, MA X S, RAHMAN M Z, et al. Thermo-sensitive sterility and self-sterility underlie the partial seed abortion phenotype of Litchi chinensis[J]. Sci Hortic, 2019, 247: 156-164. doi: 10.1016/j.scienta.2018.11.083
|
[43] |
李建国. 荔枝学[M]. 北京: 中国农业出版社, 2008.
|
[44] |
许鼎钟. 再论荔枝丰歉与气候的关系[J]. 福建果树, 1982, 1: 1-5.
|
[45] |
MITRA S K, PEREIRA L S, PATHAK P K, et al. Fruit abscission pattern of lychee cultivars[J]. Acta Hortic, 2005, 665(665): 215-218.
|
[46] |
倪耀源, 吴素芬. 荔枝栽培[M]. 北京: 中国农业出版社, 1990.
|
[47] |
STERN R A, GAZIT S. Pollen viability in lychee[J]. J Am Soc Hortic Sci, 1998, 123(1): 41-46.
|
[48] |
李建国, 王泽槐. 荔枝第二期雄花对花期落果的影响及其对策研究[J]. 中国南方果树, 1999(3): 27-28.
|
[49] |
邱燕萍, 张展薇, 王碧青, 等. 糯米糍荔枝结果期叶、果营养消长及其与落果的关系[J]. 果树学报, 1996(S1): 20-24.
|
[50] |
袁炜群, 黄旭明, 王惠聪, 等. ‘糯米糍’荔枝碳素营养储备动态与坐果的关系[J]. 园艺学报, 2009, 37(11): 1568-1574. doi: 10.3321/j.issn:0513-353X.2009.11.002
|
[51] |
YUAN R C, HUANG H B. Litchi fruit abscission: Its patterns, effect of shading and relation to endogenous abscisic acid[J]. Sci Hortic, 1988, 36(3): 281-292.
|
[52] |
向旭, 邱燕平, 张展薇. 糯米糍荔枝果实内源激素与落果的关系[J]. 果树学报, 1995(2): 88-92.
|
[53] |
李建国, 刘顺枝, 王泽槐. 荔枝果实发育过程中内源多胺含量的变化[J]. 植物生理学报, 2004, 40(2): 153-156. doi: 10.3321/j.issn:1671-3877.2004.02.006
|
[54] |
袁荣才, 黄辉白. 通过调节源−库关系以改善荔枝座果[J]. 华南农业大学学报, 1992, 13(4): 136-141.
|
[55] |
袁荣才, 黄辉白. 从调节源−库关系看环剥对荔枝幼树根梢生长与坐果的调控[J]. 果树学报, 1993(4): 195-198.
|
[56] |
周贤军, 黄德炎, 黄辉白, 等. 螺旋环剥对‘糯米糍’荔枝坐果与碳水化合物及激素的影响[J]. 园艺学报, 1999, 26(2): 77-80. doi: 10.3321/j.issn:0513-353X.1999.02.002
|
[57] |
ZHONG H Y, CHEN J W, LI C Q, et al. Selection of reliable reference genes for expression studies by reverse transcription quantitative real-time PCR in litchi under different experimental conditions[J]. Plant Cell Rep, 2011, 30(4): 641-653. doi: 10.1007/s00299-010-0992-8
|
[58] |
KUANG J F, WU J Y, ZHONG H Y, et al. Carbohydrate stress affecting fruitlet abscission and expression of genes related to auxin signal transduction pathway in litchi[J]. Int J Mol Sci, 2012, 13(12): 16084-16103. doi: 10.3390/ijms131216084
|
[59] |
PENG G, WU J Y, LU W J, et al. A polygalacturonase gene clustered into clade E involved in lychee fruitlet abscission[J]. Sci Hortic, 2013, 150(2): 244-250.
|
[60] |
吴建阳, 李彩琴, 陆旺金, 等. 荔枝ACO1基因克隆及其与幼果落果的关系[J]. 果树学报, 2013(2): 207-213.
|
[61] |
吴建阳, 李彩琴, 李建国. 荔枝ACS1基因的分离及其与幼果脱落的关系[J]. 果树学报, 2017(7): 817-827.
|
[62] |
LI C Q, WANG Y, HUANG X M, et al. De novo assembly and characterization of fruit transcriptome in Litchi chinensis Sonn and analysis of differentially regulated genes in fruit in response to shading[J]. BMC Genomics, 2013, 14(1): 552. doi: 10.1186/1471-2164-14-552
|
[63] |
LI C Q, WANG Y, YING P Y, et al. Genome-wide digital transcript analysis of putative fruitlet abscission related genes regulated by ethephon in litchi[J]. Front Plant Sci, 2015, 6(12): 502.
|
[64] |
LI C Q, WANG Y, HUANG X M, et al. An improved fruit transcriptome and the identification of the candidate genes involved in fruit abscission induced by carbohydrate stress in litchi[J]. Front Plant Sci, 2015, 6: 439.
|
[65] |
YING P Y, LI C Q, LIU X C, et al. Identification and molecular characterization of an IDA-like gene from litchi, LcIDL1, whose ectopic expression promotes floral organ abscission in Arabidopsis[J]. Sci Rep, 2016, 6: 37135. doi: 10.1038/srep37135
|
[66] |
LI C Q, ZHAO M L, MA X S, et al.Two cellulases involved in litchi fruit abscission are directly activated by an HD-Zip transcription factor LcHB2[J]. J Exp Bot, 2019. doi: 10.1093/jxb/erz276.
|
[67] |
MA X S, LI C Q, HUANG X M, et al.Involvement of HD ZIP I transcription factors LcHB2 and LcHB3 in fruitlet abscission by promoting transcription of genes related to the biosynthesis of ethylene and ABA in litchi[J/OL]. Tree Physiol, 2019. http://doi.org/10.1093/treephs/tpz071.
|
[68] |
PENG M J, YING P Y, LIU X C, et al. Genome-wide identification of histone modifiers and their expression patterns during fruit abscission in litchi[J]. Front Plant Sci, 2017, 8: 639. doi: 10.3389/fpls.2017.00639
|
[69] |
ZHANG Y Q, ZENG Z H, CHEN C J, et al. Genome-wide characterization of the auxin response factor (ARF) gene family of litchi (Litchi chinensis Sonn.): Phylogenetic analysis, miRNA regulation and expression changes during fruit abscission[J]. Peer J, 2019, 7: e6677. doi: 10.7717/peerj.6677
|
[70] |
MA W Q, CHEN C J, LIU Y L, et al. Coupling of microRNA-directed phased small interfering RNA generation from long noncoding genes with alternative splicing and alternative polyadenylation in small RNA-mediated gene silencing[J]. New Phytol, 2018, 217(4): 1535-1550. doi: 10.1111/nph.14934
|
[71] |
LI J G, HUANG H B, GAO F F, et al. An overview of Litchi fruit cracking[J]. Acta Hortic, 2001, 558(558): 205-208.
|
[72] |
李建国, 高飞飞, 黄辉白, 等. 钙与荔枝裂果关系初探[J]. 华南农业大学学报, 1999, 20(3): 45-49.
|
[73] |
HUANG X M, WANG H C, LI J G, et al. Pericarp structure in relation to fruit cracking resistance in litchi (Litchi chinensis Sonn.)[J]. Acta Hortic, 2004, 632(632): 131-137.
|
[74] |
HUANG X M, YUAN W Q, WANG H C, et al. Early calcium accumulation may play a role in spongy tissue formation in litchi pericarp[J]. J Hortic Sci Biotech, 2004, 79(6): 947-952. doi: 10.1080/14620316.2004.11511871
|
[75] |
HUANG X M, YUAN W Q, WANG H C, et al. Linking cracking resistance and fruit desiccation rate to pericarp structure in litchi (Litchi chinensis Sonn.)[J]. J Hortic Sci Biotech, 2004, 79(6): 897-905. doi: 10.1080/14620316.2004.11511863
|
[76] |
HUANG X M, WANG H C, LI J G, et al. The presence of oxalate in the pericarp and fruit pedicel is not linked to a shortage of fruit calcium and increase in cracking incidence in litchi[J]. J Hortic Sci Biotech, 2006, 81(2): 225-230. doi: 10.1080/14620316.2006.11512054
|
[77] |
HUANG X M, WANG H C, LU X Y, et al. Cell wall modifications in the pericarp of litchi (Litchi chinensis Sonn.) cultivars that differ in their resistance to cracking[J]. J Hortic Sci Biotech, 2015, 81(2): 231-237.
|
[78] |
HUANG X M, WANG H C, ZHANG H L, et al. Spraying calcium is not an effective way to increase structural calcium in litchi pericarp[J]. Sci Hortic, 2008, 117(1): 39-44. doi: 10.1016/j.scienta.2008.03.007
|
[79] |
SONG W P, CHEN W, YI J W, et al. Ca distribution pattern in litchi fruit and pedicel and impact of Ca channel inhibitor, La(3)[J]. Front Plant Sci, 2017, 8: 2228.
|
[80] |
SONG W P, YI J W, KURNIADINATA O F, et al. Linking fruit Ca uptake capacity to fruit growth and pedicel anatomy, a cross-species study[J]. Front Plant Sci, 2018, 9: 575. doi: 10.3389/fpls.2018.00575
|
[81] |
WANG H C, HUANG H B, HUANG X M, et al. Sugar and acid compositions in the arils of Litchi chinensis Sonn.: Cultivar differences and evidence for the absence of succinic acid[J]. J Hortic Sci Biotech, 2006, 81(1): 57-62. doi: 10.1080/14620316.2006.11512029
|
[82] |
YANG Z Y, WANG T D, WANG H C, et al. Patterns of enzyme activities and gene expressions in sucrose metabolism in relation to sugar accumulation and composition in the aril of Litchi chinensis Sonn.[J]. J Plant Physiol, 2013, 170(8): 731-740. doi: 10.1016/j.jplph.2012.12.021
|
[83] |
WU Z C, YANG Z Y, LI J G, et al. Methyl-inositol, γ-aminobutyric acid and other health benefit compounds in the aril of litchi[J]. Int J Food Sci Nutr, 2016, 67(7): 762-772. doi: 10.1080/09637486.2016.1198888
|
[84] |
王惠聪, 吴子辰, 黄旭明, 等. 无患子科植物荔枝和龙眼中白坚木皮醇的测定[J]. 华南农业大学学报, 2013, 34(3): 315-319. doi: 10.7671/j.issn.1001-411X.2013.03.007
|
[85] |
WU Z C, ZHANG J Q, ZHAO J T, et al. Biosynthesis of quebrachitol, a transportable photosynthate, in Litchi chinensis[J]. J Exp Bot, 2018, 69(7): 1649-1661. doi: 10.1093/jxb/erx483
|
[86] |
WANG T D, ZHANG H F, WU Z C, et al. Sugar uptake in the aril of litchi fruit depends on the apoplasmic post-phloem transport and the activity of proton pumps and the putative transporter LcSUT4[J]. Plant Cell Physiol, 2015, 56(2): 377. doi: 10.1093/pcp/pcu173
|
[87] |
LAI B, DU L N, HU B, et al. Characterization of a novel litchi R2R3-MYB transcription factor that involves in anthocyanin biosynthesis and tissue acidification[J]. BMC Plant Biol, 2019(19): 62.
|
[88] |
WEI Y Z, HU F C, HU G B, et al. Differential expression of anthocyanin biosynthetic genes in relation to anthocyanin accumulation in the pericarp of Litchi chinensis Sonn.[J]. PLoS One, 2011, 6(4): e19455. doi: 10.1371/journal.pone.0019455
|
[89] |
王惠聪, 黄旭明, 黄辉白. ‘妃子笑’荔枝果实着色不良原因的研究[J]. 园艺学报, 2002, 29(5): 408-412. doi: 10.3321/j.issn:0513-353X.2002.05.002
|
[90] |
LAI B, HU B, QIN Y H, et al. Transcriptomic analysis of Litchi chinensis pericarp during maturation with a focus on chlorophyll degradation and flavonoid biosynthesis[J]. BMC Genomics, 2015, 16(1): 225. doi: 10.1186/s12864-015-1433-4
|
[91] |
LI X J, LAI B, ZHAO J T, et al. Sequence differences in LcFGRT4 alleles are responsible for the diverse anthocyanin composition in the pericarp of Litchi chinensis[J]. Mol Breeding, 2016, 36(7): 93. doi: 10.1007/s11032-016-0518-3
|
[92] |
LI X J, ZHANG J Q, WU Z C, et al. Functional characterization of a glucosyltransferase gene, LcUFGT1, involved in the formation of cyanidin glucoside in the pericarp of Litchi chinensis[J]. Physiol Plantarum, 2016, 156(2): 139-149. doi: 10.1111/ppl.2016.156.issue-2
|
[93] |
HU B, ZHAO J T, LAI B, et al. LcGST4 is an anthocyanin-related glutathione S-transferase gene in Litchi chinensis Sonn.[J]. Plant Cell Rep, 2016, 35(4): 831-843. doi: 10.1007/s00299-015-1924-4
|
[94] |
LAI B, LI X J, HU B, et al. LcMYB1 is a key determinant of differential anthocyanin accumulation among genotypes, tissues, developmental phases and ABA and light stimuli in Litchi chinensis[J]. PLoS One, 2014, 9(1): e86293. doi: 10.1371/journal.pone.0086293
|
[95] |
LAI B, DU L N, LIU R, et al. Two LcbHLH transcription factors interacting with LcMYB1 in regulating late structural genes of anthocyanin biosynthesis in Nicotiana and Litchi chinensis during anthocyanin accumulation[J]. Front Plant Sci, 2016, 7(212): 166.
|
[96] |
WANG H C, HUANG H B, HUANG X M. Differential effects of abscisic acid and ethylene on the fruit maturation of Litchi chinensis Sonn.[J]. Plant Growth Regul, 2007, 52(3): 189-198. doi: 10.1007/s10725-007-9189-8
|
[97] |
HU B, LAI B, WANG D, et al. Three LcABFs are involved in the regulation of chlorophyll degradation and anthocyanin biosynthesis during fruit ripening in Litchi chinensis[J]. Plant Cell Physiol, 2019, 60(2): 448-461. doi: 10.1093/pcp/pcy219
|