Citation: | ZENG Shan, LIU Jun, LUO Xiwen, et al. Design and experiment of wheel-track compound power chassis for high clearance sprayer in paddy field[J]. Journal of South China Agricultural University, 2019, 40(5): 14-22. DOI: 10.7671/j.issn.1001-411X.201905070 |
To discuss the feasibility of the structure of hybrid power chassis for high-gap sprayer in the paddy field, solve the problems of deep depression of the paddy field sprayer and poor passing performance in field, and meet rice planting mode and agronomic requirements in the southern region.
The theoretical analysis of the steering and driving performance of the power chassis was carried out. The key components of the track and wheel traveling device and the transmission system of the whole machine were designed. The finite element software was used to track the trapezoidal bracket under static load conditions. After analyzing, the load distribution and weak parts of the crawler running device under full load were obtained, and the running device was optimized according to the analysis results.
The chassis clearance was determined to be 950 mm and the track width was 20 mm. Under static full load conditions, the maximum stress on the crawler trapezoidal bracket, which was 128.87 MPa, occured at the hub connection, and the maximum displacement, which was 1.05 mm, occured at the joint of the load bearing wheel, meeting the strength performance requirements. The field test results showed that the driving speed ranged from 1 to 3 km/h, the minimum turning radius of the paddy field was 3 380 mm, the front wheel depth was 115 mm, and the rear depth was 63 mm.
The wheel-wheel composite power chassis structure is feasible. The performance of the whole machine meets the requirements of paddy field operations. The results of this study have certain reference values for the development of new paddy field high-gap sprayers.
[1] |
ABUBAKAR M S, AHMAD D, OTHMAN J, et al. Present state of research on development of a high clearance vehicle for paddy fields[J]. Res J Agric Biol Sci, 2009(4): 489-497.
|
[2] |
SUN D, CHEN D, WANG S, et al. A dynamic instability detection and prediction system for high clearance tractor[J]. IFAC - Papers Online, 2016, 49(16): 50-54. doi: 10.1016/j.ifacol.2016.10.010
|
[3] |
LYASKO M I. How to calculate the effect of soil conditions on tractive performance[J]. J Terramechan, 2010, 47(6): 423-445. doi: 10.1016/j.jterra.2010.04.003
|
[4] |
邢全道, 何瑞银, 何彦平, 等. 高地隙窄形橡胶履带式水旱兼用行走系统设计[J]. 江西农业学报, 2013, 25(7): 102-104.
|
[5] |
王金武, 唐汉, 沈红光, 等. 高地隙折腰式水田多功能动力底盘设计与试验[J]. 农业工程学报, 2017, 33(16): 32-40. doi: 10.11975/j.issn.1002-6819.2017.16.005
|
[6] |
曾爱平, 邱秀丽, 赵娜, 等. 液压后驱式轻型农机水田自走底盘的设计[J]. 农机化研究, 2010, 32(7): 149-151. doi: 10.3969/j.issn.1003-188X.2010.07.039
|
[7] |
杨刚, 申屠留芳, 孙星钊, 等. 稻田管理机通用底盘的研制[J]. 农机化研究, 2013, 35(10): 107-110. doi: 10.3969/j.issn.1003-188X.2013.10.027
|
[8] |
罗锡文. 农业机械化生产学: 下册[M]. 北京: 中国农业出版社, 2002: 23-46.
|
[9] |
王旭. 轮式和履带式拖拉机适应性对比分析[J]. 拖拉机与农用运输车, 2006(1): 1-2. doi: 10.3969/j.issn.1006-0006.2006.01.001
|
[10] |
史金钟. 轮式拖拉机与履带拖拉机差异浅议[J]. 拖拉机与农用运输车, 2018, 45(1): 1-5.
|
[11] |
王志超, 史金钟, 杨柯. 可转换轮履带拖拉机现状及发展[J]. 拖拉机与农用运输车, 2017, 44(2): 4-11.
|
[12] |
周汉林, 黄雄辉, 邹诗洋, 等. 履带式联合收割机行走装置的研究[J]. 现代农业装备, 2006(5): 47-49. doi: 10.3969/j.issn.1673-2154.2006.05.023
|
[13] |
罗锡文, 蒋恩臣, 王在满, 等. 开沟起垄式水稻精量穴直播机的研制[J]. 农业工程学报, 2008, 24(12): 52-56. doi: 10.3321/j.issn:1002-6819.2008.12.011
|
[14] |
罗锡文, 欧洲, 蒋恩臣, 等. 抛掷成穴式水稻精量直播排种器试验[J]. 农业机械学报, 2005(9): 37-40. doi: 10.3969/j.issn.1000-1298.2005.09.010
|
[15] |
胡雅杰, 邢志鹏, 龚金龙, 等. 适宜机插株行距提高不同穗型粳稻产量[J]. 农业工程学报, 2013, 29(14): 33-44. doi: 10.3969/j.issn.1002-6819.2013.14.005
|
[16] |
李灏, 刘新全, 师宪福. 履带车辆松软路面行驶阻力系数与附着系数关系研究[J]. 农业装备与车辆工程, 2012, 50(11): 34-36. doi: 10.3969/j.issn.1673-3142.2012.11.009
|
[17] |
徐锡晨. 履带式小型甘蔗收割机底盘和钢架设计与分析[D]. 南宁: 广西大学, 2006.
|
[18] |
李羊林, 吴春笃, 储金宇, 等. 高射远程风送式喷雾车性能试验[J]. 农业机械学报, 2007(11): 182-184. doi: 10.3969/j.issn.1000-1298.2007.11.044
|
[19] |
陈刚, 陈树人, 杨八康. 水田高地隙喷杆喷雾机的设计与试验研究[J]. 农机化研究, 2013, 35(9): 177-180. doi: 10.3969/j.issn.1003-188X.2013.09.042
|
[20] |
中国农业机械化科学研究院, 中国农业机械化科学研究院. 农业机械设计手册: 上册[M]. 北京: 中国农业科学技术出版社, 2007: 635-713
|
[21] |
孙振杰, 刘俊峰, 李彩风, 等. 微型农用履带式行走装置的设计方法[J]. 农机化研究, 2011, 33(10): 55-58. doi: 10.3969/j.issn.1003-188X.2011.10.014
|
[22] |
李文哲, 刘宏新. 汽车拖拉机学: 第2册: 底盘构造与车辆理论[M]. 北京: 中国农业出版社, 2013: 96-119.
|
[23] |
何耀杰, 邱白晶, 杨亚飞, 等. 基于有限元模型的喷雾机喷杆弹性变形分析与控制[J]. 农业工程学报, 2014, 30(6): 28-36. doi: 10.3969/j.issn.1002-6819.2014.06.004
|
[24] |
杨方飞, 闫光, 郝云霄, 等. 基于刚柔耦合仿真模型的高地隙喷雾机转向机构特性[J]. 吉林大学学报(工学版), 2015, 45(3): 857-863.
|
[25] |
YANG Z Z, LIU D X, ZHANG X H. Finite element method analysis of the stress for line pipe with corrode groove during outdoor storage[J]. Acta Met Sin, 2013, 26(2): 188-198. doi: 10.1007/s40195-012-0122-4
|
[26] |
余志生. 汽车理论[M]. 北京: 机械工业出版社, 2009: 252-271.
|
[27] |
高翔, 郭静, 朱镇, 等. 高地隙自走式喷雾机动力传动系统的设计[J]. 农机化研究, 2017, 39(4): 247-251. doi: 10.3969/j.issn.1003-188X.2017.04.051
|
[28] |
杨学军, 严荷荣, 徐赛章, 等. 植保机械的研究现状及发展趋势[J]. 农业机械学报, 2002(6): 129-131. doi: 10.3969/j.issn.1000-1298.2002.06.038
|
[29] |
周海燕, 刘树民, 杨学军, 等. 大田蔬菜高地隙自走式喷杆喷雾机的研制[J]. 农机化研究, 2011, 33(6): 70-72. doi: 10.3969/j.issn.1003-188X.2011.06.018
|
[30] |
全国农业机械标准化技术委员会. 旋耕机: GB/T 5668—2008[S]. 北京: 中国标准出版社, 2008.
|
[31] |
全国汽车标准化技术委员会. 汽车最小转弯直径、最小转弯通道圆直径和外摆值测量方法: GB/T 12540—2009[S]. 北京: 中国标准出版社, 2010.
|