• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
TIAN Jiang, LIANG Cuiyue, LU Xing, et al. Mechanism of root exudates regulating plant responses to phosphorus deficiency[J]. Journal of South China Agricultural University, 2019, 40(5): 175-185. DOI: 10.7671/j.issn.1001-411X.201905068
Citation: TIAN Jiang, LIANG Cuiyue, LU Xing, et al. Mechanism of root exudates regulating plant responses to phosphorus deficiency[J]. Journal of South China Agricultural University, 2019, 40(5): 175-185. DOI: 10.7671/j.issn.1001-411X.201905068

Mechanism of root exudates regulating plant responses to phosphorus deficiency

More Information
  • Received Date: May 20, 2019
  • Available Online: May 17, 2023
  • Phosphorus (P) is an essential nutrient for plant growth and development. Low phosphate (Pi) availability in soil largely limits crop yield. Due to long-term improper P fertilizer application, a lot of P accumulates to form a huge P pool in soil. However, most P are insoluble inorganic P and organic P, and are difficult to be directly absorbed by plants. Plants have evolved a set of adaptive strategies to low P stress. Among them, the mechanism of root exudates participating in P acquisition and utilization has always been a hot issue. In this review, advances in low P stress regulating synthesis and exudation of root exudates (organic acid and purple acid phosphatases) were summarized. Furthermore, the vital functions of root exudates in rhizosphere ecological system are discussed to elucidate mechanism of P efficiency enhancement in crops through root exudate regulation, which would provide some clues and theoretical bases for development of high P efficiency cultivar and optimization of Pi fertilizer management in fields.

  • [1]
    CHIOU T J, LIN S I. Signaling network in sensing phosphate availability in plants[J]. Annu Rev Plant Biol, 2011, 62: 185-206. doi: 10.1146/annurev-arplant-042110-103849
    [2]
    LIANG C, WANG J, ZHAO J, et al. Control of phosphate homeostasis through gene regulation in crops[J]. Curr Opin Plant Biol, 2014, 21(14): 59-66.
    [3]
    GUTIÉRREZ-ALANÍS D, OJEDA-RIVERA J O, YONG-VILLALOBOS L, et al. Adaptation to phosphate scarcity: Tips from Arabidopsis roots[J]. Trends Plant Sci, 2018, 23(8): 721-730. doi: 10.1016/j.tplants.2018.04.006
    [4]
    HAM B K, CHEN J, YAN Y, et al. Insights into plant phosphate sensing and signaling[J]. Curr Opin Biotechnol, 2018, 49: 1-9. doi: 10.1016/j.copbio.2017.07.005
    [5]
    HESTERBERG D. Macroscale chemical properties and X-ray absorption spectroscopy of soil phosphorus[J]. Develop Soil Sci, 2010, 34: 313-356. doi: 10.1016/S0166-2481(10)34011-6
    [6]
    KOCHIAN L V, HOEKENGA O A, PIÑEROS M A. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency[J]. Annu Rev Plant Biol, 2004, 55: 459-493. doi: 10.1146/annurev.arplant.55.031903.141655
    [7]
    VANCE C P, UHDE-STONE C, ALLAN D L. Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource[J]. New Phytol, 2003, 157(3): 423-447. doi: 10.1046/j.1469-8137.2003.00695.x
    [8]
    RICHARDSON A E, HOCKING P J, SIMPSON R J, et al. Plant mechanisms to optimise access to soil phosphorus[J]. Crop Pasture Sci, 2009, 60(2): 124-143. doi: 10.1071/CP07125
    [9]
    RAGHOTHAMA K G. Phosphate acquisition[J]. Ann Rev Plant Physiol Mol Bio, 1999, 50(1): 665-693. doi: 10.1146/annurev.arplant.50.1.665
    [10]
    MA J C, HE P, XU X P, et al. Temporal and spatial changes in soil available phosphorus in China (1990—2012)[J]. Field Crop Res, 2016, 192: 13-20. doi: 10.1016/j.fcr.2016.04.006
    [11]
    夏文建, 冀建华, 刘佳, 等. 长期不同施肥红壤磷素特征和流失风险研究[J]. 中国生态农业学报, 2018, 26(12): 1876-1886.
    [12]
    VENEKLAAS E J, LAMBERS H, BRAGG J, et al. Opportunities for improving phosphorus-use efficiency in crop plants[J]. New Phytol, 2012, 195(2): 306-320. doi: 10.1111/j.1469-8137.2012.04190.x
    [13]
    TIAN J, WANG C, ZHANG Q, et al. Overexpression of OsPAP10a, a root-associated acid phosphatase, increased extracellular organic phosphorus utilization in rice[J]. J Integr Plant Biol, 2012, 54(9): 631-639. doi: 10.1111/j.1744-7909.2012.01143.x
    [14]
    LÓPEZ-ARREDONDO D L, LEYVA-GONZÁLEZ M A, GONZÁLEZ-MORALES S I, et al. Phosphate nutrition: Improving low-phosphate tolerance in crops[J]. Annu Rev Plant Biol, 2014, 65: 95-123. doi: 10.1146/annurev-arplant-050213-035949
    [15]
    SHAHZAD Z, AMTMANN A. Food for thought: How nutrients regulate root system architecture[J]. Curr Opin Plant Biol, 2017, 39: 80-87. doi: 10.1016/j.pbi.2017.06.008
    [16]
    严小龙.根系生物学原理与应用[M]. 北京: 科学出版社, 2007.
    [17]
    CANARINI A, KAISER C, MERCHANT A, et al. Root exudation of primary metabolites: Mechanisms and their roles in plant responses to environmental stimuli[J]. Front Plant Sci, 2019, 10: 157. doi: 10.3389/fpls.2019.00157
    [18]
    CHEN Z C, LIAO H. Organic acid anions: an effective defensive weapon for plants against aluminum toxicity and phosphorus deficiency in acidic soils[J]. J Genet Genom, 2016, 43(11): 631-638. doi: 10.1016/j.jgg.2016.11.003
    [19]
    TIAN J, LIAO H. The role of intracellular and secreted purple acid phosphatases in plant phosphorus scavenging and recycling[M]//PLAXTON W C, LAMBERS H. Annual plant reviews: Phosphorus metabolism in plants: Volume 48. Oxford, UK: Wiley-Blackwell, 2015: 265-287.
    [20]
    DUFF S M, SARATH G, PLAXTON W C. The role of acid phosphatases in plant phosphorus metabolism[J]. Physiol Plant, 1994, 90(4): 791-800. doi: 10.1111/ppl.1994.90.issue-4
    [21]
    BOZZO G G, RAGHOTHAMA K G, PLAXTON W C. Structural and kinetic properties of a novel purple acid phosphatase from phosphate-starved tomato (Lycopersicon esculentum) cell cultures[J]. Biochem J, 2004, 377(2): 419-428. doi: 10.1042/bj20030947
    [22]
    MATANGE N, PODOBNIK M, VISWESWARIAH S S. Metallophosphoesterases: Structural fidelity with functional promiscuity[J]. Biochem J, 2015, 467(2): 201-216. doi: 10.1042/BJ20150028
    [23]
    LI D P, ZHU H F, LIU K F, et al. Purple acid phosphatases of Arabidopsis thaliana: Comparative analysis and differential regulation by phosphate deprivation[J]. J Biol Chem, 2002, 277(31): 27772-27781. doi: 10.1074/jbc.M204183200
    [24]
    ZHANG Y, WANG X, LU S, et al. A major root-associated acid phosphatase in Arabidopsis, AtPAP10, is regulated by both local and systemic signals under phosphate starvation[J]. J Exp Bot, 2014, 65(22): 6577-6588. doi: 10.1093/jxb/eru377
    [25]
    LIANG C, TIAN J, LAM H, et al. Biochemical and molecular characterization of PvPAP3: A novel purple acid phosphatase isolated from common bean enhancing extracellular ATP utilization[J]. Plant Physiol, 2010, 152(2): 854-865. doi: 10.1104/pp.109.147918
    [26]
    LI R, LU W, GUO C, et al. Molecular characterization and functional analysis of OsPHY1, a purple acid phosphatase (PAP) - type phytase gene in rice (Oryza sativa L.)[J]. J Integr Agr, 2012, 11(8): 1217-1226. doi: 10.1016/S2095-3119(12)60118-X
    [27]
    OLCZAK M, MORAWIECKA B, WATOREK W. Plant purple acid phosphatases: Genes, structures and biological function[J]. Acta Biochim Pol, 2003, 50(4): 1245-1256.
    [28]
    TRAN H T, HURLEY B A, PLAXTON W C. Feeding hungry plants: The role of purple acid phosphatases in phosphate nutrition[J]. Plant Sci, 2010, 179(1/2): 14-27.
    [29]
    BECK J L, DE JERSEY J, ZERNER B, et al. Properties of the Fe(II)-Fe(III) derivative of red kidney bean purple phosphatase: Evidence for a binuclear zinc-iron center in the native enzyme[J]. J Am Chem Soc, 1988, 110(10): 3317-3318. doi: 10.1021/ja00218a061
    [30]
    STRÄTER N, KLABUNDE T, TUCKER P, et al. Crystal structure of a purple acid phosphatase containing a dinuclear Fe(III)-Zn(II) active site[J]. Science, 1995, 268(5216): 1489-1492. doi: 10.1126/science.7770774
    [31]
    SCHENK G, GE Y, CARRINGTON L E, et al. Binuclear metal centers in plant purple acid phosphatases: Fe-Mn in sweet potato and Fe-Zn in soybean[J]. Arch Biochem Biophys, 1999, 370(2): 183-189. doi: 10.1006/abbi.1999.1407
    [32]
    DURMUS A, EICKEN C, SIFT B H, et al. The active site of purple acid phosphatase from sweet potatoes (Ipomoea batatas): Metal content and spectroscopic characterization[J]. Eur J Biochem Banner, 1999, 260(3): 709-716. doi: 10.1046/j.1432-1327.1999.00230.x
    [33]
    DURMUS A, EICKEN C, SPENER F, et al. Cloning and comparative protein modeling of two purple acid phosphatase isozymes from sweet potatoes (Ipomoea batatas)[J]. Biochim Biophys Acta, 1999, 1434(1): 202-209. doi: 10.1016/S0167-4838(99)00176-4
    [34]
    MITIC N, SMITH S J, NEVES A, et al. The catalytic mechanisms of binuclear metallohydrolases[J]. Chem Rev, 2006, 106(8): 3338-3363. doi: 10.1021/cr050318f
    [35]
    ANTONYUK S V, OLCZAK M, OLCZAK T, et al. The structure of a purple acid phosphatase involved in plant growth and pathogen defence exhibits a novel immunoglobulin-like fold[J]. IUCr J, 2014, 1(2): 101-109. doi: 10.1107/S205225251400400X
    [36]
    DEL POZO J C, ALLONA I, RUBIO V, et al. A type 5 acid phosphatase gene from Arabidopsis thaliana is induced by phosphate starvation and by some other types of phosphate mobilising/oxidative stress conditions[J]. Plant J, 1999, 19: 579-589. doi: 10.1046/j.1365-313X.1999.00562.x
    [37]
    SCHENK G, MITIC N, HANSON G R, et al. Purple acid phosphatase: A journey into the function and mechanism of a colorful enzyme[J]. Coord Chem Rev, 2013, 257(2): 473-482. doi: 10.1016/j.ccr.2012.03.020
    [38]
    LEBANSKY B R, MCKNIGHT T D, GRIFFING L R. Purification and characterization of a secreted purple phosphatase from soybean suspension cultures[J]. Plant Physiol, 1992, 99(2): 391-395. doi: 10.1104/pp.99.2.391
    [39]
    CASHIKAR A G, KUMARESAN R, RAO N M. Biochemical characterization and subcellular localization of the red kidney bean purple acid phosphatase[J]. Plant Physiol, 1997, 114(3): 907-915. doi: 10.1104/pp.114.3.907
    [40]
    SHINANO T, YONETANI R, USHIHARA N, et al. Characteristics of phosphoenolpyruvate phosphatase purified from Allium cepa[J]. Plant Sci, 2001, 161(5): 861-869. doi: 10.1016/S0168-9452(01)00480-0
    [41]
    YONEYAMA T, SHIOZAWA M, NAKAMURA M, et al. Characterization of a novel acid phosphatase from embryonic axes of kidney bean exhibiting vanadate: Dependent chloroperoxidase activity[J]. J Biol Chem, 2004, 279(36): 37477-37484. doi: 10.1074/jbc.M405305200
    [42]
    VELJANOVSKI V, VANDERBELD B, KNOWLES V L, et al. Biochemical and molecular characterization of AtPAP26: A vacuolar purple acid phosphatase up-regulated in phosphate-deprived Arabidopsis suspension cells and seedlings[J]. Plant Physiol, 2006, 142(3): 1282-1293. doi: 10.1104/pp.106.087171
    [43]
    KAIDA R, SERADA S, NORIOKA N, et al. Potential role for purple acid phosphatase in the dephosphorylation of wall proteins in tobacco cells[J]. Plant Physiol, 2010, 153(2): 603-610. doi: 10.1104/pp.110.154138
    [44]
    PINTUS F, SPANO D, CORONGIU S, et al. Purification, primary structure, and properties of Euphorbia characias latex purple acid phosphatase[J]. Biochem (Moscow), 2011, 76(6): 694-701. doi: 10.1134/S0006297911060101
    [45]
    WANG L, LI Z, QIAN W, et al. The Arabidopsis purple acid phosphatase AtPAP10 is predominantly associated with the root surface and plays an important role in plant tolerance to phosphate limitation[J]. Plant Physiol, 2011, 157(3): 1283-1299. doi: 10.1104/pp.111.183723
    [46]
    DEL VECCHIO H A, YING S, PARK J, et al. The cell wall-targeted purple acid phosphatase AtPAP25 is critical for acclimation of Arabidopsis thaliana to nutritional phosphorus deprivation[J]. Plant J, 2014, 80(4): 569-581. doi: 10.1111/tpj.12663
    [47]
    HEGEMAN C E, GRABAU E A. A novel phytase with sequence similarity to purple acid phosphatases is expressed in cotyledons of germinating soybean seedlings[J]. Plant Physiol, 2001, 126(4): 1598-1608. doi: 10.1104/pp.126.4.1598
    [48]
    ZHU H F, QIAN W Q, LU X Z, et al. Expression patterns of purple acid phosphatase genes in Arabidopsis organs and functional analysis of AtPAP23 predominantly transcribed in flower[J]. Plant Mol Biol, 2005, 59(4): 581-594. doi: 10.1007/s11103-005-0183-0
    [49]
    LUNG S, LEUNG A, KUANG R, et al. Phytase activity in tobacco (Nicotiana tabacum) root exudates is exhibited by a purple acid phosphatase[J]. Phytochemistry, 2008, 69(2): 365-373. doi: 10.1016/j.phytochem.2007.06.036
    [50]
    ZHANG W, GRUSZEWSKI H A, CHEVONE B I, et al. An Arabidopsis purple acid phosphatase with phytase activity increases foliar ascorbate[J]. Plant Physiol, 2008, 146(2): 431-440. doi: 10.1104/pp.107.109934
    [51]
    KUANG R, CHAN K, YEUNG E, et al. Molecular and biochemical characterization of AtPAP15, a purple acid phosphatase with phytase activity in Arabidopsis[J]. Plant Physiol, 2009, 151(1): 199-209. doi: 10.1104/pp.109.143180
    [52]
    DIONISIO G, MADSEN C K, HOLM P B, et al. Cloning and characterization of purple acid phosphatase phytases from wheat, barley, maize, and rice[J]. Plant Physiol, 2011, 156(3): 1087-1100. doi: 10.1104/pp.110.164756
    [53]
    SHU B, WANG P, XIA R. Characterisation of the phytase gene in trifoliate orange (Poncirus trifoliata (L.) Raf.) seedlings[J]. Sci Hortic-Amsterdam, 2015, 194: 222-229. doi: 10.1016/j.scienta.2015.08.028
    [54]
    LIU P, CAI Z, CHEN Z, et al. A root-associated purple acid phosphatase, SgPAP23, mediates extracellular phytate-P utilization in Stylosanthes guianensis[J]. Plant Cell Environ, 2018, 41(12): 2821-2834. doi: 10.1111/pce.v41.12
    [55]
    KONG Y, LI X, WANG B, et al. The soybean purple acid phosphatase GmPAP14 predominantly enhances external phytate utilization in plants[J]. Front Plant Sci, 2018, 9: 292. doi: 10.3389/fpls.2018.00292
    [56]
    KANEKO K, OKA H, IKARASHI N, et al. Characterization of a plastidial N-glycosylated nucleotide pyrophosphatase/phospliodiesterase in rice[J]. Plant Cell Physiol, 2006, 47: 89.
    [57]
    NANJO Y, OKA H, IKARASHI N, et al. Rice plastidial N-glycosylated nucleotide pyrophosphatase/phosphodiesterase is transported from the ER-golgi to the chloroplast through the secretory pathway[J]. Plant Cell, 2006, 18(10): 2582-2592. doi: 10.1105/tpc.105.039891
    [58]
    OLCZAK M, CIURASZKIEWICZ J, WOJTOWICZ H, et al. Diphosphonucleotide phosphatase/phosphodiesterase (PPD1) from yellow lupin (Lupinus luteus L.) contains an iron-manganese center[J]. FEBS Lett, 2009, 583(19): 3280-3284. doi: 10.1016/j.febslet.2009.09.024
    [59]
    WANG J, SI Z, LI F, et al. A purple acid phosphatase plays a role in nodule formation and nitrogen fixation in Astragalus Sinicus[J]. Plant Mol Biol, 2015, 88(6): 515-529. doi: 10.1007/s11103-015-0323-0
    [60]
    KANEKO K, INOMATA T, MASUI T, et al. Nucleotide pyrophosphatase/phosphodiesterase 1 exerts a negative effect on starch accumulation and growth in rice seedlings under high temperature and CO2 concentration conditions[J]. Plant Cell Physiol, 2014, 55(2): 320-332. doi: 10.1093/pcp/pct139
    [61]
    LIU P D, XUE Y B, CHEN Z J, et al. Characterization of purple acid phosphatases involved in extracellular dNTP utilization in Stylosanthes[J]. J Exp Bot, 2016, 67(14): 4141-4154. doi: 10.1093/jxb/erw190
    [62]
    MILLER S S, LIU J, ALLAN D L, et al. Molecular control of acid phosphatase secretion into the rhizosphere of proteoid roots from phosphorus-stressed white lupin[J]. Plant Physiol, 2001, 127(2): 594-606. doi: 10.1104/pp.010097
    [63]
    ROBINSON W D, PARK J, TRAN H T, et al. The secreted purple acid phosphatase isozymes AtPAP12 and AtPAP26 play a pivotal role in extracellular phosphate-scavenging by Arabidopsis thaliana[J]. J Exp Bot, 2012b, 63(18): 6531-6542. doi: 10.1093/jxb/ers309
    [64]
    WU W, LIN Y, LIU P, et al. Association of extracellular dNTP utilization with a GmPAP1-like protein identified in cell wall proteomic analysis of soybean roots[J]. J Exp Bot, 2018, 69(3): 603-617. doi: 10.1093/jxb/erx441
    [65]
    LU L, QIU W, GAO W, et al. OsPAP10c, a novel secreted acid phosphatase in rice, plays an important role in the utilization of external organic phosphorus[J]. Plant Cell Environ, 2016, 39(10): 2247-2259. doi: 10.1111/pce.v39.10
    [66]
    SUN L, SONG L, ZHANG Y, et al. Arabidopsis PHL2 and PHR1 act redundantly as the key components of the central regulatory system controlling transcriptional responses to phosphate starvation[J]. Plant Physiol, 2016, 170(1): 499-514. doi: 10.1104/pp.15.01336
    [67]
    TAO S, ZHANG Y, WANG X, et al. The THO/TREX complex active in miRNA biogenesis negatively regulates root-associated acid phosphatase activity induced by phosphate starvation[J]. Plant Physiol, 2016, 171(4): 2841-2853.
    [68]
    LIANG C, SUN L, YAO Z, et al. Comparative analysis of PvPAP gene family and their functions in response to phosphorus deficiency in common bean[J]. PLoS One, 2012, 7(5): e38106. doi: 10.1371/journal.pone.0038106
    [69]
    WANG X, WANG Y, TIAN J, et al. Overexpressing AtPAP15 enhances phosphorus efficiency in soybean[J]. Plant Physiol, 2009, 151(1): 233-240. doi: 10.1104/pp.109.138891
    [70]
    MA X, WRIGHT E, GE Y, et al. Improving phosphorus acquisition of white clover (Trifolium repens L.) by transgenic expression of plant: Derived phytase and acid phosphatase genes[J]. Plant Sci, 2009, 176(4): 479-488. doi: 10.1016/j.plantsci.2009.01.001
    [71]
    MARUYAMA H, YAMAMURA T, KANEKO Y, et al. Effect of exogenous phosphatase and phytase activities on organic phosphate mobilization in soils with different phosphate adsorption capacities[J]. Soil Sci Plant Nutr, 2012, 58(1): 41-51. doi: 10.1080/00380768.2012.656298
    [72]
    RYAN P, DELHAIZE E, JONES D. Function and mechanism of organic anion exudation from plant roots[J]. Annu Rev Plant Physiol and Plant Mol Biol, 2001, 52: 527-560. doi: 10.1146/annurev.arplant.52.1.527
    [73]
    HAICHAR F E Z, SANTAELLA C, HEULIN T, et al. Root exudates mediated interactions below ground[J]. Soil Biol Biochem, 2014, 77: 69-80. doi: 10.1016/j.soilbio.2014.06.017
    [74]
    STRÖM L, OWEN A G, GODBOLD D L, et al. Organic acid behaviour in a calcareous soil implications for rhizosphere nutrient cycling[J]. Soil Biol Biochem, 2005, 37(11): 2046-2054. doi: 10.1016/j.soilbio.2005.03.009
    [75]
    徐锐, 彭新湘. 草酸在提高大豆磷吸收利用及抗铝性中的作用[J]. 西北植物学报, 2002, 22(2): 291-295. doi: 10.3321/j.issn:1000-4025.2002.02.012
    [76]
    ADELEKE R, NWANGBURUKA C, OBOIRIEN B. Origins, roles and fate of organic acids in soils: A review[J]. South Afr J Bot, 2017, 108: 393-406. doi: 10.1016/j.sajb.2016.09.002
    [77]
    HOFFLAND E, BOOGAARD R V D, NELEMANS J, et al. Biosynthesis and root exudation of citric and malic acids in phosphate-starved rape plants[J]. New Phytol, 1992, 122: 675-680.
    [78]
    PILBEAM D J, CAKMAK I, MARSCHNER H, et al. Effect of withdrawal of phosphorus on nitrate assimilation and PEP carboxylase activity in tomato[J]. Plant Soil, 1993, 154(1): 111-117. doi: 10.1007/BF00011079
    [79]
    RIVERE-ROLLAND H, CONTARD P.BETSCHE T. Adaptation of pea to elevated atmospheric CO2: Rubiso, phosphoenlopyruvate carboxylase and chloroplast phosphate translocator at different levels of nitrogen and phosphorus nutrition[J]. Plant Cell Environ, 1996, 19(1): 109-117. doi: 10.1111/pce.1996.19.issue-1
    [80]
    KONDRACKA A, RYCHTER A M. The role of Pi recycling processes during photo synthesis in phosphate deficient bean plants[J]. J Exp Bot, 1997, 48(7): 1461-1468. doi: 10.1093/jxb/48.7.1461
    [81]
    NEUMANN G, MASSONNEAU A, LANGLADE N, et al. Physiological aspects of cluster root function and development in phosphorus: Deficient white lupin (Lupinus albus L.)[J]. Ann Bot, 2000, 85(6): 909-919. doi: 10.1006/anbo.2000.1135
    [82]
    UHDE-STONE C, GILBERT G, JOHNSON M F, et al. Acclimation of white lupin to phosphorus deficiency involves enhanced expression of genes related to organic acid metabolism[J]. Plant Soil, 2003, 248: 99-116. doi: 10.1023/A:1022335519879
    [83]
    PEÑALOZA E, MUÑOZ G, SALVO-GARRIDO H, et al. Phosphate deficiency regulates phosphoenolpyruvate carboxylase expression in proteoid root clusters of white lupin[J]. J Exp Bot, 2005, 56(409): 145-153.
    [84]
    DECHASSA N, SCHENK M K. Root exudation of organic anions by cabbage, carrot and potato plants as affected by P supply[M]// HORST W J, SCHENK M K, BÜRKERT A, et al. Plant nutrition: Developments in plant and soil sciences: Volume 92. [S.L]: Springer, Dordrecht, 2001: 544-545.
    [85]
    GAUME A, MÄCHLER F, DE LEÓN C, et al. Low-P tolerance by maize (Zea mays L.) genotypes: Significance of root growth, and organic acids and acid phosphatase root exudation[J]. Plant Soil, 2001, 228(2): 253-264. doi: 10.1023/A:1004824019289
    [86]
    LI X F, ZUO F H, LING G Z, et al. Secretion of citrate from roots in response to aluminum and low phosphorus stresses in stylosanthes[J]. Plant Soil, 2009, 325(1/2): 219-229.
    [87]
    YOKOSHO K, YAMAJI N, MA J F. An Al-inducible MATE gene is involved in external detoxification of Al in rice[J]. Plant J, 2011, 68(6): 1061-1069. doi: 10.1111/tpj.2011.68.issue-6
    [88]
    JOHNSON J F, ALLAN D L, VANCE C P, et al. Root carbon dioxide fixation by phosphorus-deficient Lupinus albus: Contribution to organic-acid exudation by proteid roots[J]. Plant Physiol, 1996, 112: 19-30. doi: 10.1104/pp.112.1.19
    [89]
    LIAO H, WAN H, SHAFF J, et al. Phosphorus and aluminum interactions in soybean in relation to aluminum tolerance: Exudation of specific organic acids from different regions of the intact root system[J]. Plant Physiol, 2006, 141(2): 674-684. doi: 10.1104/pp.105.076497
    [90]
    AE N, ARIHARA J, OKADA K., et al. Phosphorus uptake by pigeon pea and its role in cropping systems of the Indian subcontinent[J]. Science, 1990, 284: 477-480.
    [91]
    LIGABA A, SHEN H, SHIBATA K, et al. The role of phosphorus in aluminium-induced citrate and malate exudation from rape (Brassica napus)[J]. Physiol Plant, 2004, 120: 575-584. doi: 10.1111/ppl.2004.120.issue-4
    [92]
    YANG L T, JIANG H X, QI Y P, et al. Differential expression of genes involved in alternative glycolytic pathways, phosphorus scavenging and recycling in response to aluminum and phosphorus interactions in citrus roots[J]. Mol Biol Rep, 2012, 39: 6353-6366. doi: 10.1007/s11033-012-1457-7
    [93]
    CHEN Z, CUI Q, LIANG C, et al. Identification of differentially expressed proteins in soybean nodules under phosphorus deficiency through proteomic analysis[J]. Proteomics, 2011, 11(24): 4648-4659. doi: 10.1002/pmic.v11.24
    [94]
    WANG Z, STRAUB D, YANG H, et al. The regulatory network of cluster-root function and development in phosphate-deficient white lupin (Lupinus albus) identified by transcriptome sequencing[J]. Physiol Plant, 2014, 151: 323-338. doi: 10.1111/ppl.12187
    [95]
    WANG Z A, LI Q, GE X Y, et al. The mitochondrial malate dehydrogenase1 gene GhmMDH1 is involved in plant and root growth under phosphorus deficiency conditions in cotton[J]. Sci Rep-UK, 2015, 5: 10343. doi: 10.1038/srep10343
    [96]
    TESFAYE M, TEMPLE S J, ALLAN D L, et al. Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum[J]. Plant Physiol, 2001, 127(4): 1836-1844. doi: 10.1104/pp.010376
    [97]
    LÜ J, GAO X, DONG Z, et al. Improved phosphorus acquisition by tobacco through transgenic expression of mitochondrial malate dehydrogenase from Penicillium oxalicum[J]. Plant Cell Rep, 2012, 31(1): 49-56. doi: 10.1007/s00299-011-1138-3
    [98]
    LÓPEZ-BUCIO J, DE LA VEGA O M, GUEVARA-GARCÍA A, et al. Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate[J]. Nat Biotechnol, 2000, 18(4): 450-453. doi: 10.1038/74531
    [99]
    KOYAMA H, TAKITA E, KAWAMURA A, et al. Overexpression of mitochondrial citrate synthase gene improves the growth of carrot cells in Al-phosphate medium[J]. Plant Cell Physiol, 1999, 40: 482-488. doi: 10.1093/oxfordjournals.pcp.a029568
    [100]
    KOYAMA H, KAWAMURA A, KIHARA T, et al. Overexpression of mitochondrial citrate synthase in Arabidopsis thaliana improved growth on a phosphoruslimited soil[J]. Plant Cell Physiol, 2000, 41: 1030-1037. doi: 10.1093/pcp/pcd029
    [101]
    WANG Y, XU H, KOU J J, et al. Dual effects of transgenic Brassica napus overexpressing CS gene on tolerances to aluminum toxicity and phosphorus deficiency[J]. Plant Soil, 2013, 362(1/2): 231-246. doi: 10.1007/s11104-012-1289-1
    [102]
    MEYER S, DE ANGELI A, FERNIE A R, et al. Intra - and extracellular excretion of carboxylates[J]. Trends Plant Sci, 2010, 15: 40-47.
    [103]
    DELHAIZE E, GRUBER B D, RYAN P R. The roles of organic anion permeases in aluminium resistance and mineral nutrition[J]. FEBS Lett, 2007, 581: 2255-2262. doi: 10.1016/j.febslet.2007.03.057
    [104]
    MOTODA H, SASAKI T, KANO Y, et al. The membrane topology of ALMT1: An aluminum-activated malate transport protein in wheat (Triticum aestivum)[J]. Plant Signal Behav, 2007, 2(6): 467-472. doi: 10.4161/psb.2.6.4801
    [105]
    FURUICHI T, SASAKI T, TSUCHIYA Y, et al. An extracellular hydrophilic carboxy terminal domain regulates the activity of TaALMT1: The aluminum-activated malate transport protein of wheat[J]. Plant J, 2010, 64: 47-55.
    [106]
    LIGABA A, DREYER I, MARGARYAN A, et al. Functional, structural and phylogenetic analysis of domains underlying the Al sensitivity of the aluminum-activated malate/anion transporter, TaALMT1[J]. Plant J, 2013, 76: 766-780. doi: 10.1111/tpj.12332
    [107]
    SASAKI T, YAMAMOTO Y, EZAKI B, et al. A wheat gene encoding an aluminum-activated malate transporter[J]. Plant J, 2004, 37: 645-653. doi: 10.1111/tpj.2004.37.issue-5
    [108]
    PEREIRA J F, ZHOU G F, DELHAIZE E, et al. Engineering greater aluminium resistance in wheat by over-expressing TaALMT1[J]. Ann Bot, 2010, 106(1): 205-214. doi: 10.1093/aob/mcq058
    [109]
    HOEKENGA O A, MARON L G, PIÑEROS M A, et al. AtALMT1, which encodes a malate transporter, is identified as one of several genes critical for aluminium tolerance in Arabidopsis[J]. Proc Natl Acad Sci USA, 2006, 103(25): 9738-9743. doi: 10.1073/pnas.0602868103
    [110]
    LIGABA A, KATSUHARA M, RYAN P R, et al. The BnALMT1 and BnALMT2 genes from rape encode aluminium-activated malate transporters that enhance the aluminium resistance of plant cells[J]. Plant Physiol, 2006, 142: 1294-1303. doi: 10.1104/pp.106.085233
    [111]
    LIGABA A, MARON L G, SHAFF J, et al. Maize ZmALMT2 is a root anion transporter that mediates constitutive root malate efflux[J]. Plant Cell Environ, 2012, 35(7): 1185-1200. doi: 10.1111/pce.2012.35.issue-7
    [112]
    CHEN Q, WU K H, WANG P, et al. Overexpression of MsALMT1, from the aluminum-sensitive Medicago sativa, enhances malate exudation and aluminum resistance in tobacco[J]. Plant Mol Biol Rep, 2013, 31(3): 769-774. doi: 10.1007/s11105-012-0543-2
    [113]
    CHEN Z C, YOKOSHO K, KASHINO M, et al. Adaptation to acidic soil is achieved by increased numbers of cis-acting elements regulating ALMT1 expression in Holcus lanatus[J]. Plant J, 2013, 176: 10-23.
    [114]
    LIANG C, PIÑEROS M A, TIAN J, et al. Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils[J]. Plant Physiol, 2013, 161(3): 1347-1361. doi: 10.1104/pp.112.208934
    [115]
    DELHAIZE E, TAYLOR P, HOCKING P J, et al. Transgenic barley (Hordeum vulgare L.) expressing the wheat aluminum resistance gene (TaALMT1) shows enhanced phosphorus nutrition and grain production when grown on an acid soil[J]. Plant Biotechnol J, 2009, 7(5): 391-400. doi: 10.1111/pbi.2009.7.issue-5
    [116]
    PENG W, WU W, PENG J, et al. Characterization of the soybean GmALMT family genes and the function of GmALMT5 in response to phosphate starvation[J]. J Integr Plant Biol, 2018, 60(3): 216-231. doi: 10.1111/jipb.v60.3
    [117]
    UPADHYAY N, KAR D, DEEPAK MAHAJAN B, et al. The multitasking abilities of MATE transporters in plants[J/OL]. J Exp Bot, 2019, [2019-05-20]. https://academic.oup.com/jxb/advance-article/doi/10.1093/jxb/erz246/5491795. doi: 10.1093/jxb/erz246.
    [118]
    VALENTINUZZI F, PII Y, VIGANI G, LEHMANN M, et al. Phosphorus and iron deficiencies induce a metabolic reprogramming and affect the exudation traits of the woody plant Fragaria×ananassa[J]. J Exp Bot, 2015, 66(20): 6483-6495. doi: 10.1093/jxb/erv364
    [119]
    HUANG A C, JIANG T, LIU Y X, et al. A specialized metabolic network selectively modulates Arabidopsis root microbiota[J]. Science, 2019, 364(6440): 546-554.
    [120]
    ZHANG S, ZHOU J, WANG G, et al. The role of mycorrhizal symbiosis in aluminum and phosphorus interactions in relation to aluminum tolerance in soybean[J]. Appl Microbiol Biot, 2015, 99(23): 10225-10235. doi: 10.1007/s00253-015-6913-6
  • Cited by

    Periodical cited type(2)

    1. 吕永东. 基于机器深度学习的小麦条播机双变量施肥控制方法. 中国农机装备. 2025(05): 108-111 .
    2. 郑金江. 基于VOSviewer无公害栽培技术的多维分析——发展、应用与新的挑战. 绿色科技. 2024(05): 161-167 .

    Other cited types(0)

Catalog

    Article views (1843) PDF downloads (3329) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return