Citation: | LI Xinxin, YANG Yongqing, ZHONG Yongjia, et al. Genetic improvement for nutrient efficient roots of leguminous crops adapted to acidic soils[J]. Journal of South China Agricultural University, 2019, 40(5): 186-194. DOI: 10.7671/j.issn.1001-411X.201905067 |
Over 40% of the arable lands in the world are acidic soils, where low nutrient availability is the major limiting factor for crop production. Root is not only the main organ for nutrient and water acquisition but also the primary interface for communication interactions between plants and soil microorganisms. Exploring the genetic potentials in roots for nutrient acquisition and utilization, as well as improving the composition and activity of microbes in the rhizosphere, have become the important strategies for increasing crop yield while reducing environmental pollution and promoting soil health. Moreover, nitrogen (N) fixed by legumes in symbiosis with rhizobia provides an irreplaceable clean N source in agro-ecosystems, and the symbiosis is also an important factor influencing rhizo-microbiome. Here, we took soybean as an example to summarize the progress of genetic improvement for nutrient efficiency in the roots of leguminous crops in adaptation to acidic soils, and the interactions between roots and rhizo-microorganisms to improve crop nutrient efficiency and soil health. Furthermore, we overviewed the ecological benefits through intercropping nutrient-efficient soybean varieties with maize and tea plants, and thereby provided the theoretical basis and successful examples for genetic improvement of nutrient efficiency in legumes, and its application in sustainable agriculture systems.
[1] |
HE Z, YANG X, BALIGAR V C. Increasing nutrient utilization and crop production in the red soil regions of China[J]. Commun Soil Sci Plan, 2001, 32(7/8): 1251-1263.
|
[2] |
KOCHIAN L V, HOEKENGA O A, PIÑEROS M A. How do crop plants tolerance acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency[J]. Annu Rev Plant Biol, 2004, 55: 459-493. doi: 10.1146/annurev.arplant.55.031903.141655
|
[3] |
HERRIDGE D F, PEOPLES M B, BODDEY R M. Global inputs of biological nitrogen fixation in agricultural systems[J]. Plant Soil, 2008, 311(1/2): 1-18.
|
[4] |
OLDROYD G E, DOWNIE J A. Coordinating nodule morphogenesis with rhizobial infection in legumes[J]. Annu Rev Plant Biol, 2008, 59(1): 519-546. doi: 10.1146/annurev.arplant.59.032607.092839
|
[5] |
李欣欣, 许锐能, 廖红. 大豆生物固氮在农业减肥增效中的贡献及应用潜力[J]. 大豆科学, 2016, 35(4): 531-535.
|
[6] |
VON UEXKÜLL H R, MUTERT E. Global extent, development and economic impact of acid soils[J]. Plant Soil, 1995, 171(1): 1-15. doi: 10.1007/BF00009558
|
[7] |
LYNCH J P. Root architecture and plant productivity[J]. Plant Physiol, 1995, 109: 7-13. doi: 10.1104/pp.109.1.7
|
[8] |
LIAO H, RUBIO G, YAN X, et al. Effect of phosphorus availability on basal root shallowness in common bean[J]. Plant Soil, 2001, 232: 69-79. doi: 10.1023/A:1010381919003
|
[9] |
ZHAO J, FU J B, LIAO H, et al. Characterization of root architecture in an applied core collection for phosphorus efficiency of soybean germplasm[J]. Chin Sci Bull, 2004, 49(15): 1611-1620. doi: 10.1007/BF03184131
|
[10] |
SAMPLE E C, SOPER R J, RACZ G J. Reactions of phosphate fertilizers in soils[M]//KHASAWNEH F E, SAMPLE E C, KAMPRATH E J . The role of phosphorus in agriculture. Wisconsin: Am Soc Agronomy, Crop Sci Soc Am, Soil Sci Soc Am, 1980: 263-312.
|
[11] |
SANYAL S K, D E DATTA S K. Chemistry of phosphorus transformations in soil[J]. Adv Soil Sci, 1991, 16: 1-120.
|
[12] |
DUBEY K K, RENU P, SINGH Y K, et al. Organic acid exudation and its relationship with phosphorus uptake efficiency in mungbean [Vignaradiata (L.) Wilczek] genotypes[J]. Ann Biol, 2014, 30(4): 579-588.
|
[13] |
WANG X R, WANG Y X, TIAN J, et al. Overexpressing AtPAP15 enhances phosphorus efficiency in soybean[J]. Plant Physiol, 2009, 151(1): 233-240. doi: 10.1104/pp.109.138891
|
[14] |
LIAO H, WAN H, SHAFF J, et al. Phosphorus and aluminum interactions in soybean in relation to aluminum tolerance: Exudation of specific organic acids from different regions of the intact root system[J]. Plant Physiol, 2006, 141: 674-684. doi: 10.1104/pp.105.076497
|
[15] |
YANG L T, JIANG H X, TANG N, et al. Mechanisms of aluminum-tolerance in two species of citrus: Secretion of organic acid anions and immobilization of aluminum by phosphorus in roots[J]. Plant Sci, 2011, 180(3): 521-530. doi: 10.1016/j.plantsci.2010.11.011
|
[16] |
HATTINGH M J, GRAY L E, GERDEMANN J W. Uptake and translocation of 32P labeled phosphate to onion roots by endomycorrhizal fungi[J]. Soil Sci, 1973, 116(5): 383-387. doi: 10.1097/00010694-197311000-00007
|
[17] |
RHODES L H, GERDEMANN J W. Phosphate uptake zones of mycorrhizal and non-mycorrhizal onions[J]. New Phytol, 1975, 75(3): 555-561. doi: 10.1111/nph.1975.75.issue-3
|
[18] |
AMES R N, REID C P P, PORTER L K, et al. Hyphal uptake and transport of nitrogen from two 15N-labelled sources by Glomus mosseae, a vesicular-arbuscularmycorrhizal fungus[J]. New Phytol, 1983, 95(3): 381-396. doi: 10.1111/nph.1983.95.issue-3
|
[19] |
苏友波, 林春, 张福锁, 等. 不同AM菌根菌分泌的磷酸酶对根际土壤有机磷的影响[J]. 土壤, 2003, 35(4): 334-338. doi: 10.3321/j.issn:0253-9829.2003.04.013
|
[20] |
宋勇春, 李晓林, 冯固. 泡囊丛枝(VA)菌根对玉米根际磷酸酶活性的影响[J]. 应用生态学报, 2001, 12(4): 593-596. doi: 10.3321/j.issn:1001-9332.2001.04.027
|
[21] |
QIAO X, BEI S, LI C, et al. Enhancement of faba bean competitive ability by arbuscularmycorrhizal fungi is highly correlated with dynamic nutrient acquisition by competing wheat[J]. Sci Rep, 2015, 5: 8122. doi: 10.1038/srep08122
|
[22] |
LI X X, ZENG R S, LIAO H. Improving crop nutrient efficiency through root architecture modifications[J]. J Integr Plant Biol, 2016, 58(3): 193-202. doi: 10.1111/jipb.12434
|
[23] |
程凤娴, 曹桂琴, 王秀荣, 等. 华南酸性低磷土壤中大豆根瘤菌高效株系的发现及应用[J]. 科学通报, 2008, 53(23): 2903-2910. doi: 10.3321/j.issn:0023-074X.2008.23.011
|
[24] |
ALVES B J R, BODDEY R M, URQUIAGA S. The success of BNF in soybean in Brazil[J]. Plant Soil, 2003, 252(1): 1-9. doi: 10.1023/A:1024191913296
|
[25] |
QIN L, ZHAO J, TIAN J, et al. The high-affinity phosphate transporter GmPT5 regulates phosphate transport to nodules and nodulation in soybean[J]. Plant Physiol, 2012, 159(4): 1634-1643. doi: 10.1104/pp.112.199786
|
[26] |
QIN L, JIANG H, TIAN J, et al. Rhizobia enhance acquisition of phosphorus from different sources by soybean plants[J]. Plant Soil, 2011, 349(1/2): 25-36.
|
[27] |
ALIKHANI H A, SALEH-RASTIN N, ANTOUN H. Phosphate solubilization activity of rhizobia native to Iranian soils[J]. Plant Soil, 2006, 287(1/2): 35-41.
|
[28] |
DEFEZ R, ANDREOZZI A, DICKINSON M, et al. Improved drought stress response in alfalfa plants nodulated by an IAA over-producing Rhizobium strain[J]. Front Microbiol, 2017, 8: 2466. doi: 10.3389/fmicb.2017.02466
|
[29] |
JIAN L, BAI X, ZHANG H, et al. Promotion of growth and metal accumulation of alfalfa by coinoculation with Sinorhizobium and Agrobacterium under copper and zinc stress[J]. Peer J, 2019, 7: e6875. doi: 10.7717/peerj.6875
|
[30] |
IMADA E L, ROLLA DOS SANTOS A A P, OLIVEIRA A L M, et al. Indole-3-acetic acid production via the indole-3-pyruvate pathway by plant growth promoter Rhizobium tropici CIAT 899 is strongly inhibited by ammonium[J]. Res Microbiol, 2017, 168(3): 283-292. doi: 10.1016/j.resmic.2016.10.010
|
[31] |
KOPYCIŃSKA M, LIPA P, CIEŚLA J, et al. Extracellular polysaccharide protects Rhizobium leguminosarum cells against zinc stress in vitro and during symbiosis with clover[J]. Environ Microbiol Rep, 2018, 10(3): 355-368. doi: 10.1111/emi4.2018.10.issue-3
|
[32] |
YANG Y Q, ZHAO Q S, LI X X, et al. Characterization of genetic basis on synergistic interactions between root architecture and biological nitrogen fixation in soybean[J]. Front Plant Sci, 2017, 8: 1466. doi: 10.3389/fpls.2017.01466
|
[33] |
ZHONG Y J, YANG Y Q, LIU P, et al. Genotype and rhizobium inoculation modulate the assembly of soybean rhizobacterial communities[J]. Plant Cell Environ, 2019, 42(6): 2028-2044. doi: 10.1111/pce.v42.6
|
[34] |
LIANG Q, CHENG X, MEI M, et al. QTL analysis of root traits as related to phosphorus efficiency in soybean[J]. Ann Bot, 2010, 106(1): 223-234. doi: 10.1093/aob/mcq097
|
[35] |
LI X X, ZHENG J K, YANG Y Q, et al. INCREASING NODULE SIZE1 expression is required for normal rhizobial symbiosis and nodule development[J]. Plant Physisol, 2018, 178: 1233-1248. doi: 10.1104/pp.18.01018
|
[36] |
GUO W B, ZHAO J, LI X X, et al. A soybean β-expansin gene GmEXPB2 intrinsically involved in root system architecture responses to abiotic stresses[J]. Plant J, 2011, 66: 541-552. doi: 10.1111/j.1365-313X.2011.04511.x
|
[37] |
LI X X, ZHAO J, TAN Z Y, et al. GmEXPB2, a cell wall β-expansin, affects soybean nodulation through modifying root architecture and promoting nodule formation and development[J]. Plant Physiol, 2015, 169: 2640-2653.
|
[38] |
CHEN L Y, QIN L, ZHOU L L, et al. A nodule-localized phosphate transporter GmPT7 plays an important role in enhancing symbiotic N2 fixation and yield in soybean[J]. New Phytol, 2018, 221(4): 2013-2025.
|
[39] |
NIHORIMBERE V, CAWOY H, SEYER A, et al. Impact of rhizosphere factors on cyclic lipopeptide signature from the plant beneficial strain Bacillus amyloliquefaciens S499[J]. FEMS Microbiol Ecol, 2012, 79(1): 176-191. doi: 10.1111/j.1574-6941.2011.01208.x
|
[40] |
HIRSCH A M, ALVARADO J, BRUCE D, et al. Complete genome sequence of Micromonospora strain L5, a potential plant-growth-regulating actinomycete, originally isolated from Casuarina equisetifolia root nodules[J/OL]. Genome Announc, 2013, 1(5). doi: 10.1128/genomeA.00759-13.[2019-05-20]. https://mra.asm.org/content/1/5/e00759-13.short.
|
[41] |
VANNIER N, MONY C, BITTEBIERE A K, et al. A microorganisms’s journey between plant generations[J]. Microbiome, 2018, 6(1): 79. doi: 10.1186/s40168-018-0459-7
|
[42] |
JONES D L, NGUYEN C, FINLAY D. Carbon flow in the rhizosphere: Carbon trading at the soil-root interface[J]. Plant Soil, 2009, 321(1/2): 5-33.
|
[43] |
KUZYAKOV Y, DOMANSKI G. Carbon input by plants into the soil[J]. J Plant Nutr Soil Sci, 2000, 163(4): 421-431. doi: 10.1002/(ISSN)1522-2624
|
[44] |
HENNION N, DURAND M, VRIET C, et al. Sugars en route to the roots: Transport, metabolism and storage within plant roots and towards microorganisms of the rhizosphere[J]. Physiol Plant, 2019, 165(1): 44-57. doi: 10.1111/ppl.12751
|
[45] |
JACOBY R, PEUKERT M, SUCCURRO A, et al. The role of soil microorganisms in plant mineral nutrition-current knowledge and future directions[J]. Front Plant Sci, 2017, 8: 1617. doi: 10.3389/fpls.2017.01617
|
[46] |
OHKAMA-OHTSU N, WASAKI J. Recent progress in plant nutrition research: Cross-talk between nutrients, plant physiology and soil microorganisms[J]. Plant Cell Physiol, 2010, 51(8): 1255-1264. doi: 10.1093/pcp/pcq095
|
[47] |
OLDROYD G E D, DOWNIE J A. Calcium, kinases and nodulation signaling in legumes[J]. Nat Rev Mol Cell Biol, 2004, 5: 566-576. doi: 10.1038/nrm1424
|
[48] |
RADUTOIU S, MADSEN L H, MADSEN E B, et al. LysM domains mediate lipochitin-oligosaccharide recognition and Nfr genes extend the symbiotic host range[J]. EMBO J, 2007, 26(17): 3923-3935. doi: 10.1038/sj.emboj.7601826
|
[49] |
MURRAY J D. Invasion by invitation: Rhizobial infection in legumes[J]. MPMI, 2011, 24(6): 631-639. doi: 10.1094/MPMI-08-10-0181
|
[50] |
XU Y, WANG G, JIN J, et al. Bacterial communities in soybean rhizosphere in response to soil type, soybean genotype, and their growth stage[J]. Soil Biol Biochem, 2009, 41(5): 919-925. doi: 10.1016/j.soilbio.2008.10.027
|
[51] |
LIU Z, BESKROVNAYA P, MELNYK R A, et al. A genome-wide screen identifies genes in rhizosphere-associated Pseudomonas required to evade plant defenses[J/OL]. M Biol, 2018, 9(6). doi: 10.1128/mBio.00433-18.[2019-05-20]. https://www.researchgate.net/publication/328771150_.
|
[52] |
BERG M, KOSKELLA B. Nutrient- and dose-dependent microbiome-mediated protection against a plant pathogen[J]. Curr Biol, 2018, 28(15): 2487-2492. doi: 10.1016/j.cub.2018.05.085
|
[53] |
LIU J, TANG L, GAO H, et al. Enhancement of alfalfa yield and quality by plant growth-promoting rhizobacteria under saline-alkali conditions[J]. J Sci Food Agric, 2019, 99(1): 281-289. doi: 10.1002/jsfa.2019.99.issue-1
|
[54] |
王志刚, 钟鹏, 王建丽, 等. 东北黑土区大豆根际促生菌生长条件及促生效应[J]. 大豆科学, 2012, 31(2): 270-273. doi: 10.3969/j.issn.1000-9841.2012.02.022
|
[55] |
AFZAL A, BANO A. Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum)[J]. Int J Agric Biol, 2008, 10(1): 1560-8530.
|
[56] |
ABID K, SULTAN T, KIANI M Z, et al. Effect of Rhizobium and phosphate solubilizing bacteria at different levels of phosphorus applied on nodulation, growth and yield of peas (Pisum sativum)[J]. Int J Biosci, 2016, 8(5): 112-121.
|
[57] |
EVANGELISTA-MARTÍNEZ Z. Isolation and characterization of soil Streptomyces species as potential biological control agents against fungal plant pathogens[J]. World J Microbiol Biotechnol, 2014, 30(5): 1639-1647. doi: 10.1007/s11274-013-1568-x
|
[58] |
JOG R, PANDYA M, NARESHKUMAR G, et al. Mechanism of phosphate solubilization and antifungal activity of Streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth[J]. Microbiology, 2014, 160: 778-788. doi: 10.1099/mic.0.074146-0
|
[59] |
DIAS M P, BASTOS M S, XAVIER V B, et al. Plant growth and resistance promoted by Streptomyces spp. in tomato[J]. Plant Physiol Biochem, 2017, 118: 479-493. doi: 10.1016/j.plaphy.2017.07.017
|
[60] |
王世强, 魏赛金, 杨陶陶, 等. 链霉菌JD211对水稻幼苗促生作用及土壤细菌多样性的响应[J]. 土壤学报, 2015, 52(3): 673-681.
|
[61] |
GAO X, WU M, WANG X R, et al. Root interactions in a maize/soybean intercropping system control soybean soil-borne disease, red crown rot[J/OL]. PLoS One, 2014, 9(5): e95031.[2019-05-20]. https://doi.org/10.1371/journal.pone.0095031.
|
[62] |
LOBO C B, JUÁREZ TOMÁS M S, VIRUEL E, et al. Development of low-cost formulations of plant growth-promoting bacteria to be used as inoculants in beneficial agricultural technologies[J]. Microbiol Res, 2019, 219: 12-25. doi: 10.1016/j.micres.2018.10.012
|
[63] |
李志贤, 王建武, 杨文亭, 等. 广东省甜玉米/大豆间作模式的效益分析[J]. 中国生态农业学报, 2010, 18(3): 627-631.
|
[64] |
WANG G, SHENG L, ZHAO D. Allocation of nitrogen and carbon is regulated by nodulation and mycorrhizal networks in soybean/maize intercropping system[J/OL]. Front Plant Sci, 2016, 7.[2019-05-20]. https://doi.org/10.3389/fpls.2016.01901.
|
[65] |
MENG L, ZHANG A, WANG F, et al. Arbuscularmycorrhizal fungi and rhizobium facilitate nitrogen uptake and transfer in soybean/maize intercropping system[J/OL]. Front Plant Sci, 2015, 6.[2019-05-20]. https://doi.org/10.3389/fpls.2015.00339.
|
[66] |
INGRAFFIA R, AMATO G, FRENDA A S, et al. Impacts of arbuscularmycorrhizal fungi on nutrient uptake, N2 fixation, N transfer, and growth in a wheat/faba bean intercropping system[J]. PLoS One, 2019, 14(3): e0213672.[2019-05-20]. https://doi.org/10.1371/journal.pone.0213672.
|
[67] |
HUANG J X, CHEN Y Q, SUI P, et al. Soil nitrous oxide emissions under maize-legume intercropping system in the north China plain[J]. J Integr Agric, 2014, 13(6): 1363-1372. doi: 10.1016/S2095-3119(13)60509-2
|
[68] |
HUANG J X, SUI P, NIE S W, et al. Effect of maize-legume intercropping on soil nitrate and ammonium accumulation[J]. J Food Agric Environ, 2011, 9(3/4): 416-419.
|
[69] |
LIAN T, MU Y, MA Q, et al. Use of sugarcane-soybean intercropping in acid soil impacts the structure of the soil fungal community[J]. Sci Rep, 2018, 8(1): 14488. doi: 10.1038/s41598-018-32920-2
|
[70] |
黎健龙, 涂攀峰, 陈娜, 等. 茶树与大豆间作效应分析[J]. 中国农业科学, 2008, 41(7): 2040-2047. doi: 10.3864/j.issn.0578-1752.2008.07.022
|
1. |
邓永涛,尹苗,王聪,陈希文. 猪舍环境影响因子预测模型的研究进展. 家畜生态学报. 2025(02): 122-128 .
![]() | |
2. |
刘艳昌,吴延昌,郭颖轩,李冬阳,张志霞,左现刚,李国厚. 生猪生长环境舒适度实时监测系统设计与实现. 家畜生态学报. 2024(06): 76-81+96 .
![]() | |
3. |
刘丙杰,侯慕馨,冀海燕. 基于支持向量机集成的船舶舱室温湿度预测. 海军工程大学学报. 2024(03): 21-25+32 .
![]() | |
4. |
朱佳明,孙彬,蒲施桦,潘学民,徐顺来,胡彬,齐仁立. 基于多环境因素分析的猪舍温湿度预测模型. 华南农业大学学报. 2024(05): 709-721 .
![]() | |
5. |
杨晓平,李雪寒,聂鹏程. 设施生猪环境调控现状研究和未来展望. 中国农业信息. 2024(02): 83-96 .
![]() | |
6. |
尤德安,邬锡权,陆畅,董钊杰,曾志雄,吕恩利. 数字孪生技术在现代化猪场生产应用的研究进展. 现代农业装备. 2023(04): 2-9+70 .
![]() | |
7. |
翟子鹤,陈小文,高莉平,张天柱. 基于梯度提升算法的温室黄瓜株高生长模拟. 中国农业大学学报. 2022(05): 134-145 .
![]() | |
8. |
杨东轩,吴叶兰,张刚刚,刘硕. 基于边缘计算与深度学习的禽舍监测系统设计. 江苏农业科学. 2022(09): 219-225 .
![]() | |
9. |
陈谦,杨涵,王宝刚,李文生,钱建平. 基于GRU神经网络模型的冷链运输温度时序预测. 农业大数据学报. 2022(01): 82-88 .
![]() | |
10. |
刘炫文,刘仁鑫. 猪舍小气候环境模拟预测技术研究综述. 江西农业学报. 2022(08): 122-126 .
![]() |