Citation: | DENG Xiaoling, ZHENG Yongqin, ZHENG Zheng, et al. Current research on genomic analysis of “Candidatus Liberibacter spp.”[J]. Journal of South China Agricultural University, 2019, 40(5): 137-148. DOI: 10.7671/j.issn.1001-411X.201905066 |
Citrus Huanglongbing (HLB), the highly destructive disease which has been threatening citrus production worldwide, is caused by the yet unculturable bacteria, “Candidatus Liberibacter spp.”. HLB can be spread with insect vector and contaminated seedlings. In recent years, with the rapid development of DNA sequencing technology and bioinformatics, genomic analysis had become widely used for HLB research, and had provided the new strategies to overcome the research bottleneck caused by difficulties in bacterial culture. The genomic analysis of “Candidatus Liberibacter spp.” not only helps to explore the interaction between “Candidatus Liberibacter spp.” and host plant, but also provides an important theoretical basis for resistance cultivation and early detection of HLB. This review summarizes the research progress in citrus HLB and describes the current sequencing strategy and genomic characterization of “Candidatus Liberibacter spp.”, with an emphasis on the research progress in genomic analysis of pathogenic mechanism, genetic diversity and molecular detection of “Candidatus Liberibacter spp.”.
[1] |
林孔湘. 柑桔黄梢(黄龙)病研究: 病情调查[J]. 植物病理学报, 1956, 2(1): 13-42.
|
[2] |
BOVÉ J M. Huanglongbing: A destructive, newly-emerging, century-old disease of citrus[J]. J Plant Pathol, 2006, 88(1): 7-37.
|
[3] |
BOVÉ J M. Heat-tolerant Asian HLB meets heat-sensitive African HLB in the Arabian Peninsula! Why?[J]. J Citrus Pathol, 2014, 1(1): 1-78.
|
[4] |
JAGOUEIX S, BOVÉ J M, GARNIER M. The phloem-limited bacterium of greening disease of citrus is a member of the alpha subdivision of the Proteobacteria[J]. Int J Syst Bacteriol, 1994, 44(3): 379-386. doi: 10.1099/00207713-44-3-379
|
[5] |
CHEN J C, 邓晓玲, CIVEROLO E L, 等. 柑橘黄龙病的鉴定和柯赫氏定理(英文)[J]. 植物病理学报, 2011, 41(2): 113-117.
CHEN J C, DENG X L, CIVEROLO E L, et al. 柑桔黄龙病的鉴定和柯赫氏定理(英文)[J]. 植物病理学报, 2011, 41(2): 113-117.
|
[6] |
LI W, HARTUNG J S, LEVY L. Quantitative real-time PCR for detection and identification of Candidatus Liberibacter species associated with citrus Huanglongbing[J]. J Microbiol Meth, 2006, 66(1): 104-115. doi: 10.1016/j.mimet.2005.10.018
|
[7] |
REINKING O A. Diseases of economic plants in southern China[J]. Philipp Agric, 1919, 8: 109-135.
|
[8] |
陈其儤. 潮汕黄龙病研究报告[J]. 新农季刊, 1943, 3(3/4): 142-177.
|
[9] |
LEE J A, HALBERT S E, DAWSON W O, et al. Asymptomatic spread of Huanglongbing and implications for disease control[J]. Proc Nati Acad Sci, 2015, 112(24): 7605-7610. doi: 10.1073/pnas.1508253112
|
[10] |
许美容, 陈燕玲, 邓晓玲. 柑橘黄龙病症状与“Candidatus Liberibacter asiaticus”PCR检测结果的相关性分析[J]. 植物病理学报, 2016, 46(1): 367-373.
|
[11] |
GARNIER M. Tranmission of the organism associated with citrus greening disease from sweet orange to periwinkle by dodder[J]. Phytopathology, 1983, 73(10): 1358-1363. doi: 10.1094/Phyto-73-1358
|
[12] |
唐伟文, 范怀忠. 柑桔黄龙病原侵染长春花和回接成功[J]. 华南农业大学学报, 1987, 8(4): 15-19.
|
[13] |
柯冲, 林先沾, 陈辉, 等. 柑桔黄龙病与类立克次体及线状病毒的研究初报[J]. 科学通报, 1979, 24(10): 463-466.
|
[14] |
BOVÉ J M, BONNER P, GARNIER M, et al. Penicillin and tetracycline treatments of greening disease-affected citrus plants in the glasshouse, and the bacterial nature of the prokaryote associated with greening[C]//University of California. Proceedings of 8th conference IOCV. Riverside: University of California, 1980: 91-102.
|
[15] |
GARNIER M, DANEL N, BOVÉ J M. The greening organism is a Gram negative bacterium[C]//University of California. Proceedings of 9th conference IOCV. Riverside: University of California, 1984: 115-124.
|
[16] |
邓晓玲, 唐伟文. 应用PCR技术检测柑桔黄龙病病原的研究[J]. 华南农业大学学报, 1996, 17(3): 119-120.
|
[17] |
田亚南, 柯穗, 柯冲. 应用多聚酶链式反应(PCR)技术检测和定量分析柑橘黄龙病病原[J]. 植物病理学报, 1996, 26(3): 243-250.
|
[18] |
DUAN Y, ZHOU L, HALL D G, et al. Complete genome sequence of citrus Huanglongbing bacterium, 'Candidatus Liberibacter asiaticus' obtained through metagenomics[J]. Mol Plant Microbe In, 2009, 22(8): 1011-1020. doi: 10.1094/MPMI-22-8-1011
|
[19] |
LIN H, HAN C S, LIU B, et al. Complete genome sequence of a Chinese strain of “Candidatus Liberibacter asiaticus”[J]. Genome Announc, 2013, 1(2): e113-e184.
|
[20] |
ZHENG Z, DENG X, CHEN J. Whole-genome sequence of "Candidatus Liberibacter asiaticus" from Guangdong, China[J]. Genome Announc, 2014, 2(2): e214-e273.
|
[21] |
ZHENG Z, DENG X, CHEN J. Draft genome sequence of “Candidatus Liberibacter asiaticus” from California[J]. Genome Anounc, 2014, 2(5): e914-e999.
|
[22] |
KATOH H, MIYATA S, INOUE H, et al. Unique features of a Japanese ‘Candidatus Liberibacter asiaticus’ strain revealed by whole genome sequencing[J]. PLoS One, 2014, 9(9): e106109. doi: 10.1371/journal.pone.0106109
|
[23] |
ZHENG Z, SUN X, DENG X, et al. Whole-genome sequence of “Candidatus Liberibacter asiaticus” from a Huanglongbing-affected citrus tree in central Florida[J]. Genome Announc, 2015, 3: e00169-15.
|
[24] |
WU F, ZHENG Z, DENG X, et al. Draft genome sequence of “Candidatus Liberibacter asiaticus” from Diaphorina citri in Guangdong, China[J]. Genome Announc, 2015, 3(6): e1315-e1316.
|
[25] |
WU F, KUMAGAI L, LIANG G, et al. Draft genome sequence of “Candidatus Liberibacter asiaticus” from a citrus tree in San Gabriel, California[J]. Genome Announc, 2015, 3(6): e1508-e1515.
|
[26] |
KUNTA M, ZHENG Z, WU F, et al. Draft whole-genome sequence of “Candidatus Liberibacter asiaticus” strain TX2351 isolated from Asian citrus psyllids in Texas, USA[J]. Genome Announc, 2017, 5(15): e00170-17.
|
[27] |
ZHENG Z, BAO M, WU F, et al. A type 3 prophage of ‘Candidatus Liberibacter asiaticus’ carrying a restriction-modification system[J]. Phytopathology, 2018, 108(4): 454-461. doi: 10.1094/PHYTO-08-17-0282-R
|
[28] |
DAI Z, WU F, ZHENG Z, et al. Prophage diversity of ‘Candidatus Liberibacter asiaticus’ strains in California[J]. Phytopathology, 2019: PHYTO-06-18-0185-R.
|
[29] |
CAI W, YAN Z, RASCOE J, et al. Draft whole-genome sequence of “Candidatus Liberibacter asiaticus” Strain TX1712 from citrus in Texas[J]. Genome Announc, 2018, 6(25): e00554-18.
|
[30] |
CHEN Y, LI T, ZHENG Z, et al. Draft whole-genome sequence of a “Candidatus Liberibacter asiaticus” strain from Yunnan, China[J]. Microbiol Resour Announc, 2019, 8(3): e01413-18.
|
[31] |
LIN H, COLETTA-FILHO H D, HAN C S, et al. Draft genome sequence of “Candidatus Liberibacter americanus” bacterium associated with citrus Huanglongbing in Brazil[J]. Genome Announc, 2013, 1(3): e213-e275.
|
[32] |
WULFF N A, ZHANG S, SETUBAL J C, et al. The complete genome sequence of ‘Candidatus Liberibacter americanus’, associated with citrus Huanglongbing[J]. Mol Plant Microbe In, 2014, 27(2): 163-176. doi: 10.1094/MPMI-09-13-0292-R
|
[33] |
LIN H, PIETERSEN G, HAN C, et al. Complete genome sequence of “Candidatus Liberibacter africanus”, a bacterium associated with citrus Huanglongbing[J]. Genome Announc, 2015, 3(4): e715-e733.
|
[34] |
HALL D G, ALBRECHT U, BOWMAN K D. Transmission rates of ‘Ca. Liberibacter asiaticus’ by Asian citrus psyllid are enhanced by the presence and developmental stage of citrus flush[J]. J Econ Entomol, 2016, 109(2): 558-563. doi: 10.1093/jee/tow009
|
[35] |
WU F, HUANG J, XU M, et al. Host and environmental factors influencing ‘Candidatus Liberibacter asiaticus’ acquisition in Diaphorina citri[J]. Pest Manag Sci, 2018, 74(12): 2738-2746. doi: 10.1002/ps.2018.74.issue-12
|
[36] |
ZHANG S, FLORESCRUZ Z, ZHOU L, et al. “Ca. Liberibacter asiaticus” carries an excision plasmid prophage and a chromosomally integrated prophage that becomes lytic in plant infections[J]. Mol Plant Microbe In, 2011, 24(4): 735-737.
|
[37] |
YIGHT E, HERNANDEZ D I, TRUJILLO J T, et al. Genome and metagenome sequencing: Using the human methyl-binding domain to partition genomic DNA derived from plant tissues[J]. Appl Plant Sci, 2014, 2(11): 1400064. doi: 10.3732/apps.1400064
|
[38] |
CHEN J, DENG X, SUN X, et al. Guangdong and Florida populations of “Candidatus Liberibacter asiaticus” distinguished by a genomic locus with short tandem repeats[J]. Phytopathology, 2010, 100(6): 567-572. doi: 10.1094/PHYTO-100-6-0567
|
[39] |
ZERBINO D R, BIRNEY E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs[J]. Genome Res, 2008, 18: 821-829. doi: 10.1101/gr.074492.107
|
[40] |
LANGMEAD B, SALZBERG S L. Fast gapped-read alignment with Bowtie 2[J]. Nat methods, 2012, 9(4): 357. doi: 10.1038/nmeth.1923
|
[41] |
LI H, DURBIN R. Fast and accurate long-read alignment with burrows-wheeler transform[J]. Bioinformatics, 2010, 26: 589-595. doi: 10.1093/bioinformatics/btp698
|
[42] |
HARTUNG J S, SHAO J, KUYKENDALL L D. Comparison of the “Ca. Liberibacter asiaticus” genome adapted for an intracellular lifestyle with other members of the Rhizobiales[J]. PLoS One, 2011, 6: e23289. doi: 10.1371/journal.pone.0023289
|
[43] |
WANG N, TRIVEDI P. Citrus Huanglongbing: A newly relevant disease presents unprecedented challenges[J]. Phytopathology, 2013, 103(7): 652-665. doi: 10.1094/PHYTO-12-12-0331-RVW
|
[44] |
ADAMS L, BOOPATHY R. Isolation and characterization of enteric bacteria from the hindgut of Formosan termite[J]. Bioresource Technol, 2005, 96(14): 1592-1598. doi: 10.1016/j.biortech.2004.12.020
|
[45] |
WILLIAMSON D L, WHITCOMB R F, TULLY J G, et al. Revised group classification of the genus Spiroplasma[J]. Int J Syst Evol Micr, 1998, 481: 1033-1039.
|
[46] |
DONGEN J T V, SCHURR U, PFISTER M, et al. Phloem metabolism and function have to cope with low internal oxygen[J]. Plant Physiol, 2003, 131(4): 1529-1543. doi: 10.1104/pp.102.017202
|
[47] |
VILLECHANOUX S, GARNIER M, LAIGRET F, et al. The genome of the non-cultured, bacterial-like organism associated with citrus greening disease contains the nusG-rplKAJL-rpoBC gene cluster and the gene for a bacteriophage type DNA polymerase[J]. Curr Microbiol, 1993, 26(3): 161-166. doi: 10.1007/BF01577372
|
[48] |
ZHOU L, POWELL C A, HOFFMAN M T, et al. Diversity and plasticity of the intracellular plant pathogen and insect symbiont “Candidatus Liberibacter asiaticus” as revealed by hypervariable prophage genes with intragenic tandem repeats[J]. Appl Environ Microb, 2011, 77(18): 6663-6673. doi: 10.1128/AEM.05111-11
|
[49] |
ZHENG Z, BAO M, WU F, et al. Predominance of single prophage carrying a CRISPR/Cas system in “Candidatus Liberibacter asiaticus” strains in southern China[J]. PLoS One, 2016, 11(1): e0146422. doi: 10.1371/journal.pone.0146422
|
[50] |
YAN Q, SREEDHARAN A, WEI S, et al. Global gene expression changes in Candidatus Liberibacter asiaticus during the transmission in distinct hosts between plant and insect[J]. Mol Plant Pathol, 2013, 14(4): 391-404. doi: 10.1111/mpp.2013.14.issue-4
|
[51] |
DODDS P N, RATHJEN J P. Plant immunity: Towards an integrated view of plant–pathogen interactions[J]. Nat Rev Genet, 2010, 11(8): 539.
|
[52] |
PRASAD S, XU J, ZHANG Y, et al. SEC-translocon dependent extracytoplasmic proteins of Candidatus Liberibacter asiaticus[J]. Front Microbiol, 2016, 7: 1989.
|
[53] |
CLARK K, FRANCO J Y, SCHWIZER S, et al. An effector from the Huanglongbing-associated pathogen targets citrus proteases[J]. Nat Commun, 2018, 9: 1718. doi: 10.1038/s41467-018-04140-9
|
[54] |
PITINO M, ARMSTRONG C M, CANO L M, et al. Transient expression of Candidatus Liberibacter asiaticus effector induces cell death in Nicotiana benthamiana[J]. Front Plant Sci, 2016(7): 982.
|
[55] |
ZOU H, GOWDA S, ZHOU L, et al. The destructive citrus pathogen, 'Candidatus Liberibacter asiaticus' encodes a functional flagellin characteristic of a pathogen-associated molecular pattern[J]. PLoS One, 2012, 7(9): e46447. doi: 10.1371/journal.pone.0046447
|
[56] |
HARTUNG J S, PAUL C, ACHOR D, et al. Colonization of dodder, Cuscuta indecora, by ‘Candidatus Liberibacter asiaticus’ and ‘Ca. L. americanus’[J]. Phytopathology, 2010, 100(8): 756-762. doi: 10.1094/PHYTO-100-8-0756
|
[57] |
钱艳杰, 刘敏, 欧阳立力, 等. 利用Gateway技术筛选Candidatus Liberibacter asiaticus致病相关基因研究[J]. 植物病理学报, 2017, 47(6): 816-823.
|
[58] |
ZHONG Y, CHENG C, JIANG N, et al. Comparative transcriptome and iTRAQ proteome analyses of citrus root responses to Candidatus Liberibacter asiaticus infection[J]. PLoS One, 2015, 10(6): e126973.
|
[59] |
FLEITES L A, JAIN M, ZHANG S, et al. “Candidatus Liberibacter asiaticus” prophage late genes may limit host range and culturability[J]. Appl Environ Microb, 2014, 80(19): 6023-6030. doi: 10.1128/AEM.01958-14
|
[60] |
JAIN M, FLEITES L A, GABRIEL D W. Prophage-encoded peroxidase in “Candidatus Liberibacter asiaticus” is a secreted effector that suppresses plant defenses[J]. Mol Plant Microbe In, 2015, 28(12): 1330-1337. doi: 10.1094/MPMI-07-15-0145-R
|
[61] |
GAO S, GARNIER M, BOVC J M. Production of monoclonal antibodies recognizing most asian strains of the greening BLO by in vitro immunization with an antigenic protein purified from the BLO[C]//University of California. Proceedings of 12th conference IOCV. Riverside: University of California, 1993: 244-249.
|
[62] |
GARNIER M, MARTINGROS G, BOVÉ J M. Monoclonal antibodies against the bacterial-like organism associated with citrus greening disease[J]. Microbiologie, 1987, 138(6): 639-650.
|
[63] |
廖晓兰, 朱水芳, 赵文军, 等. 柑橘黄龙病病原16S rDNA克隆、测序及实时荧光PCR检测方法的建立[J]. 农业生物技术学报, 2004, 12(1): 80-85. doi: 10.3969/j.issn.1674-7968.2004.01.017
|
[64] |
冯震, 周根, 邓晓玲. 沙田柚黄龙病病原16S rDNA片段的克隆与序列分析[J]. 广西农业生物科学, 2006, 25(2): 107-110.
|
[65] |
GARNIER M, JAGOUEIX S, CRONJE P R, et al. Genomic characterization of a Liberibacter present in an ornamental rutaceous tree, Calodendrum capense, in the Western Cape Province of South Africa: Proposal of “Candidatus Liberibacter africanus subsp. capensis”[J]. Int J Syst Evol Micr, 2000, 50(6): 2119-2125. doi: 10.1099/00207713-50-6-2119
|
[66] |
BASTIANEL C, GARNIERSEMANCIK M, RENAUDIN J, et al. Diversity of “Candidatus Liberibacter asiaticus” based on the omp gene sequence[J]. Appl Environ Microb, 2005, 71(11): 6473-6478. doi: 10.1128/AEM.71.11.6473-6478.2005
|
[67] |
DODDAPANENI H, LIAO H, LIN H, et al. Comparative phylogenomics and multi-gene cluster analyses of the citrus Huanglongbing (HLB)-associated bacterium Candidatus Liberibacter[J]. BMC Res Notes, 2008, 1(1): 72. doi: 10.1186/1756-0500-1-72
|
[68] |
SUBANDIYAH S, NIKOH N, TSUYUMU S, et al. Complex endosymbiotic microbiota of the citrus psyllid Diaphorina citri (Homoptera: Psylloidea)[J]. Zoologicalence, 2009, 17: 983-989.
|
[69] |
TOMIMURA K, FURUYA N, MIYATA S, et al. Distribution of two distinct genotypes of citrus greening organism in the Ryukyu Islands of Japan[J]. Jpn Agr Res Q, 2010, 44(2): 151-158. doi: 10.6090/jarq.44.151
|
[70] |
FURUYA N, MATSUKURA K, TOMIMURA K, et al. Sequence homogeneity of the ψserA-trmU-tufB-secE-nusG-rplKAJL-rpoB gene cluster and the flanking regions of ‘Candidatus Liberibacter asiaticus’ isolates around Okinawa main island in Japan[J]. J General Plant Pathol, 2010, 76(2): 122-131. doi: 10.1007/s10327-010-0223-8
|
[71] |
HU W Z, WANG X F, ZHOU Y, et al. Diversity of the omp gene in “Candidatus Liberibacter asiaticus” in China[J]. J Plant Pathol, 2011, 93(1): 211-214.
|
[72] |
MIYATA S I, KATO H, DAVIS R, et al. Asian-common strains of “Candidatus Liberibacter asiaticus” are distributed in Northeast India, Papua New Guinea and Timor-Leste[J]. J Gen Plant Pathol, 2011, 77(1): 43-47. doi: 10.1007/s10327-010-0284-8
|
[73] |
MA W, LIANG M, GUAN L, et al. Population structures of “Candidatus Liberibacter asiaticus” in Southern China[J]. Phytopathology, 2014, 104(2): 158-62. doi: 10.1094/PHYTO-04-13-0110-R
|
[74] |
GHOSH D K, BHOSE S, MOTGHARE M, et al. Genetic diversity of the Indian populations of “Candidatus Liberibacter asiaticus” based on the tandem repeat variability in a genomic locus[J]. Phytopathology, 2015, 105(8): 1043-1049. doi: 10.1094/PHYTO-09-14-0253-R
|
[75] |
MATOS L A, HILF M E, CHEN J, et al. Validation of variable number of tandem repeat-based approach for examination of “Candidatus Liberibacter asiaticus” diversity and its applications for the analysis of the pathogen populations in the areas of recent introduction[J]. PLoS One, 2013, 8(11): 1551-1557.
|
[76] |
DENG X, LOPES S, WANG X, et al. Characterization of “Candidatus Liberibacter asiaticus” populations by double-locus analyses[J]. Curr Microbiol, 2014, 69(4): 554-560. doi: 10.1007/s00284-014-0621-9
|
[77] |
KATOH H, SUBANDIYAH S, TOMIMURA K, et al. Differentiation of “Candidatus Liberibacter asiaticus” isolates by variable-number tandem-repeat analysis[J]. Appl Environ Microb, 2011, 77(5): 1910-1917. doi: 10.1128/AEM.01571-10
|
[78] |
KATOH H, DAVIS R, SMITH M W, et al. Differentiation of Indian, East Timorese, Papuan and Floridian “Candidatus Liberibacter asiaticus” isolates on the basis of simple sequence repeat and single nucleotide polymorphism profiles at 25 loci[J]. Ann Appl Biol, 2012, 160(3): 291-297. doi: 10.1111/aab.2012.160.issue-3
|
[79] |
许美容, 郑正, 李昕昱, 等. 基于短串联重复和PAGE的柑橘黄龙病菌‘Candidatus Liberibacter asiaticus’种间遗传多样性分析[J]. 植物病理学报, 2014, 44(6): 609-619.
|
[80] |
WANG X, ZHOU C, DENG X, et al. Molecular characterization of a mosaic locus in the genome of “Candidatus Liberibacter asiaticus”[J]. BMC Microbiol, 2012, 12(1): 18. doi: 10.1186/1471-2180-12-18
|
[81] |
BOYD E F, BRUSSOW H. Common themes among bacteriophage-encoded virulence factors and diversity among the bacteriophages involved[J]. Trends in Microbiol, 2002, 10(11): 521-529. doi: 10.1016/S0966-842X(02)02459-9
|
[82] |
PUTTAMUK T, ZHOU L, THAVEECHAI N, et al. Genetic diversity of “Candidatus Liberibacter asiaticus” based on two hypervariable effector genes in Thailand[J]. PLoS One, 2014, 9(12): e112968-e112968. doi: 10.1371/journal.pone.0112968
|
[83] |
LIU R, ZHANG P, PU X, et al. Analysis of a prophage gene frequency revealed population variation of “Candidatus Liberibacter asiaticus” from two citrus-growing provinces in China[J]. Plant Dis, 2011, 95(4): 431-435. doi: 10.1094/PDIS-04-10-0300
|
[84] |
李嘉慧, 郑正, 邓晓玲. 基于原噬菌体类型的我国柑橘黄龙病菌种群遗传结构分析[J]. 植物病理学报, 2019, 49(3): 334-342.
|
[85] |
ZHENG Z, WU F, KUMAGAI L, et al. Two ‘Candidatus Liberibacter asiaticus’ strains recently found in California harbor different prophages[J]. Phytopathology, 2017, 107(6): 662-668. doi: 10.1094/PHYTO-10-16-0385-R
|
[86] |
JAGOUEIX S, BOVÉ J M, GARNIER M. PCR detection of the two ‘Candidatus’Liberibacter species associated with greening disease of citrus[J]. Mol Cell Probes, 1996, 10(1): 43-50. doi: 10.1006/mcpr.1996.0006
|
[87] |
丁芳, 易干军, 王国平. 应用PCR及Nested-PCR技术检测柑桔黄龙病病原研究[J]. 园艺学报, 2004, 31(6): 803-806. doi: 10.3321/j.issn:0513-353X.2004.06.022
|
[88] |
胡浩, 殷幼平, 王中康, 等. 柑橘黄龙病的常规PCR及荧光定量PCR检测[J]. 中国农业科学, 2006, 39(12): 2491-2497. doi: 10.3321/j.issn:0578-1752.2006.12.013
|
[89] |
KOGENARU S, YAN Q, RIERA N, et al. Repertoire of novel sequence signatures for the detection of “Candidatus Liberibacter asiaticus” by quantitative real-time PCR[J]. BMC Microbiol, 2014, 14: 39. doi: 10.1186/1471-2180-14-39
|
[90] |
MORGAN J K, ZHOU L, LI W, et al. Improved real-time PCR detection of “Candidatus Liberibacter asiaticus” from citrus and psyllid hosts by targeting the intragenic tandem-repeats of its prophage genes[J]. Mol Cell Probes, 2012, 26(2): 90-98. doi: 10.1016/j.mcp.2011.12.001
|
[91] |
ZHENG Z, XU M, BAO M, et al. Unusual five copies and dual forms of nrdB in “Candidatus Liberibacter asiaticus”: Biological implications and PCR detection application[J]. Sci Rep, 2016, 6(1): 1-9. doi: 10.1038/s41598-016-0001-8
|
[92] |
SECHLER A, SCHUENZEL E L, COOKE P, et al. Cultivation of ‘Candidatus Liberibacter asiaticus’, ‘Ca. L. africanus’, and ‘Ca. L. americanus’ associated with Huanglongbing[J]. Phytopathology, 2009, 99(5): 480-486. doi: 10.1094/PHYTO-99-5-0480
|
1. |
赵志刚,郭晓芹,赵传芳,吕文雪,于小亚,吕爽. 环介导等温扩增技术在动物细小病毒检测中的应用研究进展. 特产研究. 2025(02): 194-199 .
![]() | |
2. |
陈文静,董章勇,宋汉达,罗梅. 环介导等温扩增技术在植物病原物检测中的应用. 仲恺农业工程学院学报. 2024(04): 48-54 .
![]() |