Citation: | LEI Jianjun, CHEN Changming, CHEN Guoju, et al. Progress in glucosinolates and its molecular mechanism of biosynthesis[J]. Journal of South China Agricultural University, 2019, 40(5): 59-70. DOI: 10.7671/j.issn.1001-411X.201905065 |
Glucosinolates (GS) are important secondary metabolites in plants. They have many functions, especially the breakdown product of glucoraphanin, sulphoraphane, has anti-cancer properties and therefore has been paid great attention. A great progress has been made in research of glucosinolates in recent years. This paper presents a review on the function, type, distribution, transportation, biosynthesis and degradation of glucosinolate, factors affecting the biosynthesis and accumulation, genetic engineering, prospects and so on.
[1] |
彭佩, 卿志星, 田艳, 等. 十字花科植物中硫代葡萄糖苷激发因子研究进展[J]. 食品安全质量检测学报, 2019, 10(4): 886-891.
|
[2] |
魏大勇, 崔艺馨, 熊清, 等. 用全基因组关联作图和共表达网络分析鉴定油菜种子硫苷含量的候选基因[J]. 作物学报, 2018, 44(5): 5-17.
|
[3] |
毛舒香, 王军伟, 徐浩然, 等. 十字花科蔬菜萝卜硫素合成代谢相关基因及外源调控[J]. 中国细胞生物学学报, 2018, 40(8): 1415-1423. doi: 10.11844/cjcb.2018.08.0376
|
[4] |
SCHONHOF I, KRUMBEIN A, BRÜCKNER B. Genotypic effects on glucosinolates and sensory properties of broccoli and cauliflower[J]. Mol Nutr Food Res, 2010, 48(1): 25-33.
|
[5] |
PADILLA G, CARTEA M E, VELASCO P, et al. Variation of glucosinolates in vegetable crops of Brassica rapa[J]. Phytochemistry, 2007, 68(4): 536-545. doi: 10.1016/j.phytochem.2006.11.017
|
[6] |
ABUYUSUF M, ROBIN A, LEE J, et al. Glucosinolate profiling and expression analysis of glucosinolate biosynthesis genes differentiate white mold resistant and susceptible cabbage lines[J]. Int J Mol Sci, 2018, 19(12): 4037. doi: 10.3390/ijms19124037
|
[7] |
AIRES A, CARVALHO R, BARBOSA M D C, et al. Suppressing potato cyst nematode, Globodera rostochiensis, with extracts of Brassicacea plants[J]. Am J Potato Res, 2009, 86(4): 327-333. doi: 10.1007/s12230-009-9086-y
|
[8] |
LUCARINI E, MICHELI L, TRALLORI E, et al. Effect of glucoraphanin and sulforaphane against chemotherapy‐induced neuropathic pain: Kv7 potassium channels modulation by H2S release in vivo[J]. Phytother Res, 2018, 32(11): 2226-2234. doi: 10.1002/ptr.v32.11
|
[9] |
罗丽娜. 硫代葡萄糖苷水解产物抗肿瘤作用的研究[D]. 武汉: 华中科技大学, 2007.
|
[10] |
LIU B, MAO Q Q, CAO M, et al. Cruciferous vegetables intake and risk of prostate cancer: A meta-analysis[J]. INT J Urol, 2012, 19(2): 134-141. doi: 10.1111/iju.2012.19.issue-2
|
[11] |
WU Q J, YANG Y, VOGTMANN E, et al. Cruciferous vegetables intake and the risk of colorectal cancer: A meta-analysis of observational studies[J]. Ann Oncol, 2013, 24(4): 1079-1087. doi: 10.1093/annonc/mds601
|
[12] |
LIU X, LÜ K. Cruciferous vegetables intake is inversely associated with risk of breast cancer: A meta-analysis[J]. Breast, 2013, 22(3): 309-313. doi: 10.1016/j.breast.2012.07.013
|
[13] |
CITI V, PIRAGINE E, PAGNOTTA E, et al. Anticancer properties of erucin, an H2S-releasing isothiocyanate, on human pancreatic adenocarcinoma cells (AsPC-1)[J]. Phytother Res, 2019, 33(3): 845-855. doi: 10.1002/ptr.v33.3
|
[14] |
ABBAOUI B, LUCAS C, RIEDL K M, et al. Cruciferous vegetables, isothiocyanates and bladder cancer prevention[J]. Mol Nutr Food Res, 2018,62(18). doi: 10.1002/mnfr.20180079.
|
[15] |
MAWSON R, HEANEY R K, ZDUNCZYK Z, et al. Rapeseed meal-glucosinolates and their antinutritional effects: Part 6: Taint in end-products[J]. Die Nahrung, 2010, 39(1): 21-31.
|
[16] |
FAHEY J W, ZALCMANN A T, TALALAY P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants[J]. Phytochemistry, 2001, 56(1): 5-51. doi: 10.1016/S0031-9422(00)00316-2
|
[17] |
CLARKE D B. Glucosinolates, structures and analysis in food[J]. Anal Methods-UK, 2010, 2(4): 310-325. doi: 10.1039/b9ay00280d
|
[18] |
AGERBIRK N, OLSEN C E. Glucosinolate structures in evolution[J]. Phytochemistry, 2012, 77(1): 16-45.
|
[19] |
HWANG I M, PARK B, DANG Y M, et al. Simultaneous direct determination of 15 glucosinolates in eight Brassica species by UHPLC-Q-Orbitrap-MS[J]. Food Chem, 2019, 282: 127-133. doi: 10.1016/j.foodchem.2018.12.036
|
[20] |
LEI J, CHEN G, CHEN C, et al. Germplasm diversity of Chinese kale in China[J]. Hort Plant J, 2017, 3(3): 14-17.
|
[21] |
仙园园, 张华, 吴增宝, 等. 维药刺山柑果实硫代葡萄糖苷酶解条件的研究及产物的鉴定[J]. 中国医院药学杂志, 2014, 34(15): 1255-1259.
|
[22] |
李文钊, 杜依登, 朱华平, 等. 响应面试验优化番木瓜籽中硫代葡萄糖苷酶解工艺[J]. 食品科学, 2014, 35(18): 28-31. doi: 10.7506/spkx1002-6630-201418006
|
[23] |
司雨, 陈国菊, 雷建军, 等. 不同基因型芥蓝硫代葡萄糖苷组分与含量分析[J]. 中国蔬菜, 2009, 1(6): 7-13.
|
[24] |
QIAN H, SUN B, MIAO H, et al. Variation of glucosinolates and quinone reductase activity among different varieties of Chinese kale and improvement of glucoraphanin by metabolic engineering[J]. Food Chem, 2015, 168(168): 321-326.
|
[25] |
OERLEMANS K, BARRETT D M, SUADES C B, et al. Thermal degradation of glucosinolates in red cabbage[J]. Food Chem, 2006, 95(1): 19-29. doi: 10.1016/j.foodchem.2004.12.013
|
[26] |
江定, 陈国菊, 雷建军, 等. 硫代葡萄糖苷运输的生理生化及分子机理研究进展[J]. 植物生理学报, 2017(1): 29-37.
|
[27] |
ANDERSEN T G, NOUR-ELDIN H H, FULLER V L, et al. Integration of biosynthesis and long-distance transport establish organ-specific glucosinolate profiles in vegetative Arabidopsis[J]. Plant Cell, 2013, 25(8): 3133-3145. doi: 10.1105/tpc.113.110890
|
[28] |
ANDERSEN T G, HALKIER B A. Upon bolting the GTR1 and GTR2 transporters mediate transport of glucosinolates to the inflorescence rather than roots[J]. Plant Signal Behav, 2014, 9(1): e27740.
|
[29] |
NOUR-ELDIN H H, ANDERSEN T G, BUROW M, et al. NRT/PTR transporters are essential for translocation of glucosinolate defence compounds to seeds[J]. Nature, 2012, 488(7412): 531-534. doi: 10.1038/nature11285
|
[30] |
JIANG D, LEI J, CAO B, et al. Molecular cloning and characterization of three glucosinolate transporter (GTR) genes from Chinese kale[J]. Genes, 2019, 10(3): 202. doi: 10.3390/genes10030202
|
[31] |
AUGUSTINE R, BISHT N C. Biofortification of oilseed Brassica juncea with the anti-cancer compound glucoraphanin by suppressing GSL-ALK gene family[J]. Sci Rep-UK, 2015, 5: 18005.
|
[32] |
HALKIER B A, DU L. The biosynthesis of glucosinolates[J]. Trends Plant Sci, 1997, 2(11): 425-431. doi: 10.1016/S1360-1385(97)90026-1
|
[33] |
ZHANG J, WANG H, LIU Z, et al. A naturally occurring variation in the BrMAM-3 gene is associated with aliphatic glucosinolate accumulation in Brassica rapa leaves[J]. Hort Res, 2018, 5(1): 69. doi: 10.1038/s41438-018-0074-6
|
[34] |
杜海, 冉凤, 刘静, 等. 拟南芥硫苷生物合成相关基因的组织和胁迫诱导表达谱的全基因组分析[J]. 中国农业科学, 2016, 49(15): 2879-2897. doi: 10.3864/j.issn.0578-1752.2016.15.003
|
[35] |
TAMARA G, BETTINA B, HANS-PETER M, et al. The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana[J]. Plant J, 2010, 50(5): 886-901.
|
[36] |
GIGOLASHVILI T, BERGER B, FLÜGGE U I. Specific and coordinated control of indolic and aliphatic glucosinolate biosynthesis by R2R3-MYB transcription factors in Arabidopsis thaliana[J]. Phytochem Rev, 2009, 8(1): 3-13. doi: 10.1007/s11101-008-9112-6
|
[37] |
CAI C, YUAN W, MIAO H, et al. Functional characterization of BoaMYB51s as central regulators of indole glucosinolate biosynthesis in Brassica oleracea var. alboglabra Bailey[J]. Front Plant Sci, 2018.
|
[38] |
YU Q, HAO G, ZHOU J, et al. Identification and expression pattern analysis of BoMYB51 involved in indolic glucosinolate biosynthesis from broccoli (Brassica oleracea var. italica)[J]. Biochem Bioph Res Co, 2018, 501(2): 598-604. doi: 10.1016/j.bbrc.2018.05.058
|
[39] |
SONDERBY I E, HANSEN B G, BJARNHOLT N, et al. A systems biology approach identifies a R2R3 MYB gene subfamily with distinct and overlapping functions in regulation of aliphatic glucosinolates[J]. PLoS One, 2007, 2(12): e1322. doi: 10.1371/journal.pone.0001322
|
[40] |
SONDERBY I E, BUROW M, ROWE H C, et al. A complex interplay of three R2R3 MYB transcription factors determines the profile of aliphatic glucosinolates in Arabidopsis[J]. Plant Physiol, 2010, 153(1): 348-363. doi: 10.1104/pp.109.149286
|
[41] |
SERGEY M, EYAL B, HADAR L, et al. The transcript and metabolite networks affected by the two clades of Arabidopsis glucosinolate biosynthesis regulators[J]. Plant Physiol, 2008, 148(4): 2021-2049. doi: 10.1104/pp.108.124784
|
[42] |
ARAKI R, HASUMI A, NISHIZAWA O I, et al. Novel bioresources for studies of Brassica oleracea: Identification of a kale MYB transcription factor responsible for glucosinolate production[J]. Plant Biotechnol J, 2013, 11(8): 1017-1027. doi: 10.1111/pbi.12095
|
[43] |
FENWICK G R, HEANEY R K, MULLIN W J. Glucosinolates and their breakdown products in food and food plants[J]. Crit Rev Food Sci Nutr, 1983, 18(2): 123-201. doi: 10.1080/10408398209527361
|
[44] |
BRANDT S, FACHINGER S, TOHGE T, et al. Extended darkness induces internal turnover of glucosinolates in Arabidopsis thaliana leaves[J]. PLoS One, 2018, 13(8): e202153.
|
[45] |
LIANG H, WEI Y, LI R, et al. Intensifying sulforaphane formation in broccoli sprouts by using other cruciferous sprouts additions[J]. Food Sci Biotechnol, 2018, 27(4): 1-6.
|
[46] |
MACLEOD A J, PANESAR S S, GIL V. Thermal degradation of glucosinolates[J]. Phytochemistry, 1981, 20(5): 977-980. doi: 10.1016/0031-9422(81)83011-7
|
[47] |
MACLEOD A J, ROSSITER J T. Non-enzymic degradation of 2-hydroxybut-3-enylglucosinolate (progoitrin)[J]. Phytochemistry, 1986, 25(4): 855-858. doi: 10.1016/0031-9422(86)80016-4
|
[48] |
SYLVIE C, LAURENT D, GÉRARD B, et al. Isolation and structure elucidation of a new thermal breakdown product of glucobrassicin, the parent indole glucosinolate[J]. J Agr Food Chem, 2002, 50(18): 5185-5190. doi: 10.1021/jf020125i
|
[49] |
SONG L, THORNALLEY P J. Effect of storage, processing and cooking on glucosinolate content of Brassica vegetables[J]. Food Chem Toxicol, 2007, 45(2): 216-224. doi: 10.1016/j.fct.2006.07.021
|
[50] |
RUNGAPAMESTRY V, DUNCAN A J, FULLER Z, et al. Changes in glucosinolate concentrations, myrosinase activity, and production of metabolites of glucosinolates in cabbage (Brassica oleracea var. capitata) cooked for different durations[J]. J Agric Food Chem, 2006, 54(20): 7628-7634. doi: 10.1021/jf0607314
|
[51] |
TABART J, PINCEMAIL J, KEVERS C, et al. Processing effects on antioxidant, glucosinolate, and sulforaphane contents in broccoli and red cabbage[J]. Eur Food Res Technol, 2018, 244(4): 2085-2094.
|
[52] |
OKUNADE O, NIRANJAN K, GHAWI S K, et al. Supplementation of the diet by exogenous myrosinase via mustard seeds to increase the bioavailability of sulforaphane in healthy human subjects after the consumption of cooked broccoli[J]. Mol Nutr Food Res, 2018, 62(18): e1700980.
|
[53] |
GRONOWITZ S, SVENSSON L, OHLSON R. Studies of some nonenzymic reactions of progoitrin[J]. J Agr Food Chem, 2002, 26(4): 887-890.
|
[54] |
PALOP M L, SMITHS J P, BRINK B T. Degradation of sinigrin by Lactobacillus agilis strain R16[J]. Int J Food Microbiol, 1995, 26(2): 219-229. doi: 10.1016/0168-1605(95)00123-2
|
[55] |
SOENGAS P, CARTEA M E, VELASCO P, et al. Brassica glucosinolate rhythmicity in response to light-dark entrainment cycles is cultivar-dependent[J]. Plant Sci, 2018, 275: 28-35. doi: 10.1016/j.plantsci.2018.07.009
|
[56] |
CHEN G J, YU S, CAO B H, et al. Analysis of combining ability and heredity parameters of glucosinolates in Chinese kale[J]. [J]Afr J Biotechnol, 2010, 9(53): 9026-9031.
|
[57] |
KUSHAD M M, BROWN A F, KURILICH A C, et al. Variation of glucosinolates in vegetable crops of Brassica oleracea[J]. J Agr Food Chem, 1999, 47(4): 1541-1548. doi: 10.1021/jf980985s
|
[58] |
LENZI M, FIMOGNARI C, HRELIA P. Sulforaphane as a promising molecule for fighting cancer[J]. Mutat Res-Rev Mutat, 2007, 635(2): 90-104.
|
[59] |
DIAS J S. Nutritional quality and health benefits of vegetables: A review[J]. Food and Nutri Sci, 2012, 3(10): 1354.
|
[60] |
马永华, 陈文妃, 陈凌云, 等. 小白菜不同叶期及不同叶位硫苷的质量摩尔浓度[J]. 浙江农林大学学报, 2018, 35(6): 132-136.
|
[61] |
BELLOSTAS N, KACHLICKI P, SØRENSEN J C, et al. Glucosinolate profiling of seeds and sprouts of B. oleracea varieties used for food[J]. Sci Hortic-Amsterdam, 2007, 114(4): 234-242. doi: 10.1016/j.scienta.2007.06.015
|
[62] |
PEREIRA F M, ROSA E, FAHEY J W, et al. Influence of temperature and ontogeny on the levels of glucosinolates in broccoli (Brassica oleracea var. italica) sprouts and their effect on the induction of mammalian phase 2 enzymes[J]. J Agric Food Chem, 2002, 50(21): 6239-6244. doi: 10.1021/jf020309x
|
[63] |
RYCHLIK M, ADAM S T. Glucosinolate and folate content in sprouted broccoli seeds[J]. Eur Food Res Technol, 2008, 226(5): 1057-1064. doi: 10.1007/s00217-007-0631-y
|
[64] |
MARTINEZ-VILLALUENGA C, PEÑAS E, CISKA E, et al. Time dependence of bioactive compounds and antioxidant capacity during germination of different cultivars of broccoli and radish seeds[J]. Food Chem, 2010, 120(3): 710-716. doi: 10.1016/j.foodchem.2009.10.067
|
[65] |
TIAN Q, ROSSELOT R A, SCHWARTZ S J. Quantitative determination of intact glucosinolates in broccoli, broccoli sprouts, brussels sprouts, and cauliflower by high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry[J]. Anal Biochem, 2005, 343(1): 93-99. doi: 10.1016/j.ab.2005.04.045
|
[66] |
HANLON P R, BARNES D M. Phytochemical composition and biological activity of 8 varieties of radish (Raphanus sativus L.) sprouts and mature taproots[J]. J Food Sci, 2011, 76(1): C185-C192. doi: 10.1111/j.1750-3841.2010.01972.x
|
[67] |
郭丽萍, 朱英莲, 唐娟. 十字花科芽苗菜与成熟蔬菜生物活性成分的比较[J]. 营养学报, 2017(6): 588-593. doi: 10.3969/j.issn.0512-7955.2017.06.014
|
[68] |
RANGKADILOK N, NICOLAS M E, BENNETT R N, et al. Developmental changes of sinigrin and glucoraphanin in three Brassica species (Brassica nigra, Brassica juncea and Brassica oleracea var. italica)[J]. Sci Hortic-Amsterdam, 2002, 96(1/2/3/4): 11-26.
|
[69] |
SHIM J Y, KIM H Y, KIM D G, et al. Optimizing growth conditions for glucosinolate production in Chinese cabbage[J]. Hortic Environ Biote, 2018, 59(5): 649-657. doi: 10.1007/s13580-018-0084-1
|
[70] |
BOHINC T, TRDAN S. Environmental factors affecting the glucosinolate content in Brassicaceae[J]. J Food Agric Environ, 2012, 10: 357-360.
|
[71] |
KISSEN R, EBERL F, WINGE P, et al. Effect of growth temperature on glucosinolate profiles in Arabidopsis thaliana accessions[J]. Phytochemistry, 2016, 130: 106-118. doi: 10.1016/j.phytochem.2016.06.003
|
[72] |
ZHENG Y J, ZHANG Y T, LIU H C, et al. Supplemental blue light increases growth and quality of greenhouse pak choi depending on cultivar and supplemental light intensity[J]. J Integr Agr, 2018, 17(10): 2245-2256. doi: 10.1016/S2095-3119(18)62064-7
|
[73] |
GROENBAEK M, TYBIRK E, KRISTENSEN H L. Glucosinolate and carotenoid content of white- and yellow-flowering rapeseed grown for human consumption as sprouts and seedlings under light emitting diodes[J]. Eur Food Res Technol, 2018, 244(6): 1121-1131. doi: 10.1007/s00217-017-3027-7
|
[74] |
KOPSELL D A, SAMS C E, BARICKMAN T C, et al. Sprouting broccoli accumulate higher concentrations of nutritionally important metabolites under narrow-band light-emitting diode lighting[J]. J Am Soc Hortic Sci, 2014, 139(4): 469-477. doi: 10.21273/JASHS.139.4.469
|
[75] |
BOOTH E J, WALKER K C, GRIFFITHS D W. A time-course study of the effect of sulphur on glucosinolates in oilseed rape (Brassica napus) from the vegetative stage to maturity[J]. J Sci Food Agr, 2010, 56(4): 479-493.
|
[76] |
HU K L, ZHU Z J, ZANG Y X, et al. Accumulation of glucosinolates and nutrients in pakchoi (Brassica campestris L. ssp. chinensis var. communis ) two cultivar plants exposed to sulfur deficiency[J]. Hortic Environ Biote, 2011, 52(2): 121-127. doi: 10.1007/s13580-011-0097-5
|
[77] |
田璐, 吴嘉琪, 李昕悦, 等. NaCl与CaCl2处理对西兰花芽苗硫苷和异硫氰酸盐含量的影响[J]. 南京农业大学学报, 2017, 40(2): 352-358. doi: 10.7685/jnau.201610002
|
[78] |
颜廷帅, 陈日远, 杨伟, 等. 叶面喷施甲硫氨酸对白菜生长和硫苷含量的影响[J]. 河北农业科学, 2018, 22(4): 51-52.
|
[79] |
KUSZNIEREWICZ B, BĄCZEK-KWINTA R, BARTOSZEK A, et al. The dose-dependent influence of zinc and cadmium contamination of soil on their uptake and glucosinolate content in white cabbage (Brassica oleracea var. capitata f. alba)[J]. Environ Toxicol Chem, 2012, 31(11): 2482-2489. doi: 10.1002/etc.v31.11
|
[80] |
初婷, 彭畅, 郭丽萍. MgSO4处理对西兰花芽苗菜生理活性物质和抗氧化能力的影响[J]. 食品科学, 2018, 39(11): 53-59. doi: 10.7506/spkx1002-6630-201811009
|
[81] |
SÁNCHEZ-PUJANTE P J, SABATER-JARA A B, BELCHÍ-NAVARRO S, et al. Increased glucosinolate production in Brassica oleracea var. italica cell cultures due to coronatine activated genes involved in glucosinolate biosynthesis[J]. J Agr Food Chem, 2019, 67(1): 102-111. doi: 10.1021/acs.jafc.8b04298
|
[82] |
CHUNG I, REKHA K, RAJAKUMAR G, et al. Influence of silver nanoparticles on the enhancement and transcriptional changes of glucosinolates and phenolic compounds in genetically transformed root cultures of Brassica rapa ssp. rapa[J]. Bioproc Biosyst Eng, 2018, 41(11): 1665-1677. doi: 10.1007/s00449-018-1991-3
|
[83] |
TIAN M, YANG Y, ÁVILA F W, et al. Effects of selenium supplementation on glucosinolate biosynthesis in broccoli[J]. J Agr Food Chem, 2018, 66(30): 8036-8044. doi: 10.1021/acs.jafc.8b03396
|
[84] |
TROLOVE S N, YONG T, MORRISON S C, et al. Development of a method for producing selenium-enriched radish sprouts[J]. LWT-Food Sci Technol, 2018, 95: 187-192. doi: 10.1016/j.lwt.2018.04.048
|
[85] |
DI GIOIA F, AVATO P, SERIO F, et al. Glucosinolate profile of Eruca sativa, Diplotaxis tenuifolia and Diplotaxis erucoides grown in soil and soilless systems[J]. J Food Compos Anal, 2018, 69: 197-204. doi: 10.1016/j.jfca.2018.01.022
|
[86] |
ABUYUSUF M, ROBIN A, KIM H T, et al. Altered glucosinolate profiles and expression of glucosinolate biosynthesis genes in ringspot-resistant and susceptible cabbage lines[J]. Int J Mol Sci, 2018, 19(9): 2833.
|
[87] |
COCETTA G, MISHRA S, RAFFAELLI A, et al. Effect of heat root stress and high salinity on glucosinolates metabolism in wild rocket[J]. J Plant Physiol, 2018, 231: 261-270. doi: 10.1016/j.jplph.2018.10.003
|
[88] |
LÓPEZ-BERENGUER C, MARTÍNEZ-BALLESTA M D C, MORENO D A, et al. Growing hardier crops for better health: Salinity tolerance and the nutritional value of broccoli[J]. J Agr Food Chem, 2009, 57(2): 572-578. doi: 10.1021/jf802994p
|
[89] |
YUAN G, WANG X, GUO R, et al. Effect of salt stress on phenolic compounds, glucosinolates, myrosinase and antioxidant activity in radish sprouts[J]. Food Chem, 2010, 121(4): 1014-1019. doi: 10.1016/j.foodchem.2010.01.040
|
[90] |
PÉREZ-BALIBREA S, MORENO D A, GARCÍA-VIGUERA C. Improving the phytochemical composition of broccoli sprouts by elicitation[J]. Food Chem, 2011, 129(1): 35-44. doi: 10.1016/j.foodchem.2011.03.049
|
[91] |
VALE A P, SANTOS J, BRITO N V, et al. Evaluating the impact of sprouting conditions on the glucosinolate content of Brassica oleracea sprouts[J]. Phytochemistry, 2015, 115(1): 252-260.
|
[92] |
GUO R F, YUAN G F, WANG Q M. Sucrose enhances the accumulation of anthocyanins and glucosinolates in broccoli sprouts[J]. Food Chem, 2011, 129(3): 1080-1087. doi: 10.1016/j.foodchem.2011.05.078
|
[93] |
GUO R F, YUAN G F, WANG Q M. Effect of sucrose and mannitol on the accumulation of health-promoting compounds and the activity of metabolic enzymes in broccoli sprouts[J]. Sci Hortic-Amsterdam, 2011, 128(3): 159-165. doi: 10.1016/j.scienta.2011.01.014
|
[94] |
GUO R, HOU Q, YUAN G, et al. Effect of 2, 4-epibrassinolide on main health-promoting compounds in broccoli sprouts[J]. LWT-Food Sci Technol, 2014, 58(1): 287-292. doi: 10.1016/j.lwt.2014.02.047
|
[95] |
FARD N S, ABAD H H S, RAD A H S, et al. Effect of drought stress on qualitative characteristics of canola cultivars in winter cultivation[J]. Ind Crop Prod, 2018, 114: 87-92. doi: 10.1016/j.indcrop.2018.01.082
|
[96] |
EOM S, BAEK S, KIM J, et al. Transcriptome analysis in Chinese cabbage (Brassica rapa ssp. pekinensis) provides the role of glucosinolate metabolism in response to drought stress[J]. Molecules, 2018, 23(5): 1186. doi: 10.3390/molecules23051186
|
[97] |
GOLS R, VAN DAM N M, REICHELT M, et al. Seasonal and herbivore-induced dynamics of foliar glucosinolates in wild cabbage (Brassica oleracea)[J]. Chemoecology, 2018, 28(3): 77-89. doi: 10.1007/s00049-018-0258-4
|
[98] |
CARTEA M E, VELASCO P, OBREGÓN S, et al. Seasonal variation in glucosinolate content in Brassica oleracea crops grown in northwestern Spain[J]. Phytochemistry, 2008, 69(2): 403-410. doi: 10.1016/j.phytochem.2007.08.014
|
[99] |
VALLEJO F, TOMÁS-BARBERÁN F A, BENAVENTE-GARCÍA A G, et al. Total and individual glucosinolate contents in inflorescences of eight broccoli cultivars grown under various climatic and fertilisation conditions[J]. J Sci Food Agr, 2003, 83(4): 307-313. doi: 10.1002/jsfa.1320
|
[100] |
王辉, 廖永翠, 徐东辉, 等. 普通白菜叶片中硫代葡萄糖苷的季节性变化[J]. 中国蔬菜, 2011, 1(10): 35-40.
|
[101] |
LEE J H, LEE J, KIM H, et al. Brassinosteroids regulate glucosinolate biosynthesis in Arabidopsis thaliana[J]. Physiol Plant, 2018, 163: 450-458. doi: 10.1111/ppl.2018.163.issue-4
|
[102] |
XU L, YANG H, REN L, et al. Jasmonic acid-mediated aliphatic glucosinolate metabolism is involved in clubroot disease development in Brassica napus L[J]. Front Plant Sci, 2018, 9: 750. doi: 10.3389/fpls.2018.00750
|
[103] |
YI G E, ROBIN A H, YANG K, et al. Exogenous methyl jasmonate and salicylic acid induce subspecies-specific patterns of glucosinolate accumulation and gene expression in Brassica oleracea L[J]. Molecules, 2016, 21(10): 1417. doi: 10.3390/molecules21101417
|
[104] |
THIRUVENGADAM M, BASKAR V, KIM S H, et al. Effects of abscisic acid, jasmonic acid and salicylic acid on the content of phytochemicals and their gene expression profiles and biological activity in turnip (Brassica rapa ssp. rapa)[J]. Plant Growth Regul, 2016, 80(3): 377-390. doi: 10.1007/s10725-016-0178-7
|
[105] |
AGUILAR-CAMACHO M, WELTI-CHANES J, JACOBO-VELÁZQUEZ D A. Combined effect of ultrasound treatment and exogenous phytohormones on the accumulation of bioactive compounds in broccoli florets[J]. Ultrason Sonochem, 2019, 50: 289-301. doi: 10.1016/j.ultsonch.2018.09.031
|