LI Guoling, XU Zhiqian, YANG Huaqiang, et al. Advances on transgenic and gene-edited pigs[J]. Journal of South China Agricultural University, 2019, 40(5): 91-101. DOI: 10.7671/j.issn.1001-411X.201905063
    Citation: LI Guoling, XU Zhiqian, YANG Huaqiang, et al. Advances on transgenic and gene-edited pigs[J]. Journal of South China Agricultural University, 2019, 40(5): 91-101. DOI: 10.7671/j.issn.1001-411X.201905063

    Advances on transgenic and gene-edited pigs

    More Information
    • Received Date: May 26, 2019
    • Available Online: May 17, 2023
    • Pigs are important agricultural animals and highly similar to humans in terms of genetic background, anatomy, physiological pathology, nutrient metabolism and disease characteristics. Pigs are intensively studied for the improvement of production traits, establishment of animal models for human diseases and xenotransplantation. With the emergence of gene editing technologies, such as ZFN, TALEN and CRISPR, the research on transgenic or gene-edited pigs has achieved a rapid development. This review summarizes the current research advance of transgenic and gene-edited pigs in China. We also review the applications of gene editing technology in agricultural area, such as increasing meat production, improving meat quality, and resisting disease, as well as in biomedical study such as establishing human disease models, animal bioreactors and xenotransplantation for references of pig genetic improvement and medical research.

    • [1]
      WANG J, LIU M, ZHAO L, et al. Disabling of nephrogenesis in porcine embryos via CRISPR/Cas9-mediated SIX1 and SIX4 gene targeting[J]. Xenotransplantation, 2019, 26(3): e12484. doi: 10.1111/xen.2019.26.issue-3
      [2]
      YAN S, TU Z, LIU Z, et al. A Huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington's disease[J]. Cell, 2018, 173(4): 989-1002. doi: 10.1016/j.cell.2018.03.005
      [3]
      HAI T, GUO W, YAO J, et al. Creation of miniature pig model of human Waardenburg syndrome type 2A by ENU mutagenesis[J]. Hum Genet, 2017, 136(11/12): 1463-1475. doi: 10.1007/s00439-017-1851-2
      [4]
      HSU P D, LANDER E S, ZHANG F. Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell, 2014, 157(6): 1262-1278. doi: 10.1016/j.cell.2014.05.010
      [5]
      NISHIMASU H, RAN F A, HSU P D, et al. Crystal structure of Cas9 in complex with guide RNA and target DNA[J]. Cell, 2014, 156(5): 935-949. doi: 10.1016/j.cell.2014.02.001
      [6]
      DOUDNA J A, CHARPENTIER E. The new frontier of genome engineering with CRISPR-Cas9[J]. Science, 2014, 346(6213): 1258096. doi: 10.1126/science.1258096
      [7]
      RAN F A, HSU P D, LIN C Y, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity[J]. Cell, 2013, 154(6): 1380-1389. doi: 10.1016/j.cell.2013.08.021
      [8]
      QI L S, LARSON M H, GILBERT L A, et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell, 2013, 152(5): 1173-1183. doi: 10.1016/j.cell.2013.02.022
      [9]
      吴添文, 齐传翔, 李训碧, 等. 基因组编辑猪的研究现状及展望[J]. 农业生物技术学报, 2017, 25(5): 781-787.
      [10]
      ZHANG H X, ZHANG Y, YIN H. Genome editing with mRNA encoding ZFN, TALEN, and Cas9[J]. Mol Ther, 2019, 27(4): 735-746. doi: 10.1016/j.ymthe.2019.01.014
      [11]
      TOWNSEND J A, WRIGHT D A, WINFREY R J, et al. High-frequency modification of plant genes using engineered zinc-finger nucleases[J]. Nature, 2009, 459(7245): 442-445. doi: 10.1038/nature07845
      [12]
      LOMBARDO A, GENOVESE P, BEAUSEJOUR C M, et al. Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery[J]. Nat Biotechnol, 2007, 25(11): 1298-1306. doi: 10.1038/nbt1353
      [13]
      DURAI S, MANI M, KANDAVELOU K, et al. Zinc finger nucleases: Custom-designed molecular scissors for genome engineering of plant and mammalian cells[J]. Nucleic Acids Res, 2005, 33(18): 5978-5990. doi: 10.1093/nar/gki912
      [14]
      CHU C, YANG Z, YANG J, et al. Homologous recombination-mediated targeted integration in monkey embryos using TALE nucleases[J]. BMC Biotechnol, 2019, 19: 7. doi: 10.1186/s12896-018-0494-2
      [15]
      GUILINGER J P, PATTANAYAK V, REYON D, et al. Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity[J]. Nat Methods, 2014, 11(4): 429-435. doi: 10.1038/nmeth.2845
      [16]
      CERMAK T, DOYLE E L, CHRISTIAN M, et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting[J]. Nucleic Acids Res, 2011, 39(12): e82. doi: 10.1093/nar/gkr218
      [17]
      LI T, HUANG S, ZHAO X, et al. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes[J]. Nucleic Acids Res, 2011, 39(14): 6315-6325. doi: 10.1093/nar/gkr188
      [18]
      HIRANO S, NISHIMASU H, ISHITANI R, et al. Structural basis for the altered PAM specificities of engineered CRISPR-Cas9[J]. Mol Cell, 2016, 61(6): 886-894. doi: 10.1016/j.molcel.2016.02.018
      [19]
      HU J H, MILLER S M, GEURTS M H, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity[J]. Nature, 2018, 556(7699): 57-63. doi: 10.1038/nature26155
      [20]
      XU S, CAO S, ZOU B, et al. An alternative novel tool for DNA editing without target sequence limitation: The structure-guided nuclease[J]. Genome Biol, 2016, 17(1): 186. doi: 10.1186/s13059-016-1038-5
      [21]
      SWARTS D C, VAN DER OOST J, JINEK M. Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a[J]. Mol Cell, 2017, 66(2): 221-233. doi: 10.1016/j.molcel.2017.03.016
      [22]
      KIM E, KOO T, PARK S W, et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni[J]. Nat Commun, 2017, 8: 14500. doi: 10.1038/ncomms14500
      [23]
      RAN F A, CONG L, YAN W X, et al. In vivo genome editing using Staphylococcus aureus Cas9[J]. Nature, 2015, 520(7546): 186-191. doi: 10.1038/nature14299
      [24]
      HARRINGTON L B, BURSTEIN D, CHEN J S, et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes[J]. Science, 2018, 362(6416): 839-842. doi: 10.1126/science.aav4294
      [25]
      CRUZ-GARCIA A, LOPEZ-SAAVEDRA A, HUERTAS P. BRCA1 accelerates CtIP-mediated DNA-end resection[J]. Cell Rep, 2014, 9(2): 451-459. doi: 10.1016/j.celrep.2014.08.076
      [26]
      HEYER W D, EHMSEN K T, LIU J. Regulation of homologous recombination in eukaryotes[J]. Annu Rev Genet, 2010, 44: 113-139. doi: 10.1146/annurev-genet-051710-150955
      [27]
      CHEN Y, ZHENG Y, KANG Y, et al. Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9[J]. Hum Mol Genet, 2015, 24(13): 3764-3774. doi: 10.1093/hmg/ddv120
      [28]
      YANG H, WU Z. Genome editing of pigs for agriculture and biomedicine[J]. Front Genet, 2018, 9: 360. doi: 10.3389/fgene.2018.00360
      [29]
      PIERZCHALA M, PAREEK C S, URBANSKI P, et al. Study of the differential transcription in liver of growth hormone receptor (GHR), insulin-like growth factors (IGF1, IGF2) and insulin-like growth factor receptor (IGF1R) genes at different postnatal developmental ages in pig breeds[J]. Mol Biol Rep, 2012, 39(3): 3055-3066. doi: 10.1007/s11033-011-1068-8
      [30]
      JEON J T, CARLBORG O, TORNSTEN A, et al. A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus[J]. Nat Genet, 1999, 21(2): 157-158. doi: 10.1038/5938
      [31]
      XIANG G, REN J, HAI T, et al. Editing porcine IGF2 regulatory element improved meat production in Chinese Bama pigs[J]. Cell Mol Life Sci, 2018, 75(24): 4619-4628. doi: 10.1007/s00018-018-2917-6
      [32]
      LIU X, LIU H, WANG M, et al. Disruption of the ZBED6 binding site in intron 3 of IGF2 by CRISPR/Cas9 leads to enhanced muscle development in Liang Guang Small Spotted pigs[J]. Transgenic Res, 2019, 28(1): 141-150. doi: 10.1007/s11248-018-0107-9
      [33]
      QIAN L, TANG M, YANG J, et al. Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs[J]. Sci Rep, 2015, 5: 14435. doi: 10.1038/srep14435
      [34]
      WANG K, OUYANG H, XIE Z, et al. Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system[J]. Sci Rep, 2015, 5: 16623. doi: 10.1038/srep16623
      [35]
      ZHENG Q, LIN J, HUANG J, et al. Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity[J]. Proc Natl Acad Sci USA, 2017, 114(45): E9474-E9482. doi: 10.1073/pnas.1707853114
      [36]
      SAEKI K, MATSUMOTO K, KINOSHITA M, et al. Functional expression of a Delta12 fatty acid desaturase gene from spinach in transgenic pigs[J]. Proc Natl Acad Sci USA, 2004, 101(17): 6361-6366. doi: 10.1073/pnas.0308111101
      [37]
      JIANG W, OKEN H, FIUZAT M, et al. Plasma omega-3 polyunsaturated fatty acids and survival in patients with chronic heart failure and major depressive disorder[J]. J Cardiovasc Transl Res, 2012, 5(1): 92-99. doi: 10.1007/s12265-011-9325-8
      [38]
      KANG J X. The omega-6/omega-3 fatty acid ratio in chronic diseases: Animal models and molecular aspects[J]. World Rev Nutr Diet, 2011, 102: 22-29. doi: 10.1159/000327787
      [39]
      LAI L, KANG J X, LI R, et al. Generation of cloned transgenic pigs rich in omega-3 fatty acids[J]. Nat Biotechnol, 2006, 24(4): 435-436. doi: 10.1038/nbt1198
      [40]
      ZHANG P, ZHANG Y, DOU H, et al. Handmade cloned transgenic piglets expressing the nematode fat-1 gene[J]. Cell Reprogram, 2012, 14(3): 258-266. doi: 10.1089/cell.2011.0073
      [41]
      LI M, OUYANG H, YUAN H, et al. Site-specific fat-1 knock-in enables significant decrease of n-6PUFAs/n-3PUFAs ratio in pigs[J]. G3-Genes Genom Genet, 2018, 8(5): 1747-1754.
      [42]
      TANG F, YANG X, LIU D, et al. Co-expression of fat1 and fat2 in transgenic pigs promotes synthesis of polyunsaturated fatty acids[J/OL]. Transgenic Res, 2019. http://doi.org/10.1007/s11248-019-00127-4
      [43]
      ZHANG L, ZHOU Y, WU W, et al. Skeletal muscle-specific overexpression of PGC-1α induces fiber-type conversion through enhanced mitochondrial respiration and fatty acid oxidation in mice and pigs[J]. Int J Biol Sci, 2017, 13(9): 1152-1162. doi: 10.7150/ijbs.20132
      [44]
      YING F, ZHANG L, BU G, et al. Muscle fiber-type conversion in the transgenic pigs with overexpression of PGC1α gene in muscle[J]. Biochem Biophys Res Commun, 2016, 480(4): 669-674. doi: 10.1016/j.bbrc.2016.10.113
      [45]
      ZHANG X, LI Z, YANG H, et al. Novel transgenic pigs with enhanced growth and reduced environmental impact[J]. Elife, 2018, 7: e34286. doi: 10.7554/eLife.34286
      [46]
      GOLOVAN S P, MEIDINGER R G, AJAKAIYE A, et al. Pigs expressing salivary phytase produce low-phosphorus manure[J]. Nat Biotechnol, 2001, 19(8): 741-745. doi: 10.1038/90788
      [47]
      LIN Y S, YANG C C, HSU C C, et al. Establishment of a novel, eco-friendly transgenic pig model using porcine pancreatic amylase promoter-driven fungal cellulase transgenes[J]. Transgenic Res, 2015, 24(1): 61-71. doi: 10.1007/s11248-014-9817-9
      [48]
      HUANG M, LI Z, HUANG X, et al. Co-expression of two fibrolytic enzyme genes in CHO cells and transgenic mice[J]. Transgenic Res, 2013, 22(4): 779-790. doi: 10.1007/s11248-012-9681-4
      [49]
      ZHANG M, CAI G, ZHENG E, et al. Transgenic pigs expressing beta-xylanase in the parotid gland improve nutrient utilization[J]. Transgenic Res, 2019, 28(2): 189-198. doi: 10.1007/s11248-019-00110-z
      [50]
      HU S, QIAO J, FU Q, et al. Transgenic shRNA pigs reduce susceptibility to foot and mouth disease virus infection[J]. Elife, 2015, 4: e6951.
      [51]
      XIE Z, PANG D, YUAN H, et al. Genetically modified pigs are protected from classical swine fever virus[J]. PLoS Pathog, 2018, 14(12): e1007193. doi: 10.1371/journal.ppat.1007193
      [52]
      YAN Q, YANG H, YANG D, et al. Production of transgenic pigs over-expressing the antiviral gene Mx1[J]. Cell Regen (Lond), 2014, 3(1): 11.
      [53]
      江戈龙, 高文超, 刘德武, 等. 母源抗体对感染PCV2仔猪体内病毒变化和免疫反应的影响[J]. 中国兽医学报, 2017, 37(3): 398-403.
      [54]
      NIU P, SHABIR N, KHATUN A, et al. Effect of polymorphisms in the GBP1, Mx1 and CD163 genes on host responses to PRRSV infection in pigs[J]. Vet Microbiol, 2016, 182: 187-195. doi: 10.1016/j.vetmic.2015.11.010
      [55]
      ZHU L, SONG H, ZHANG X, et al. Inhibition of porcine reproductive and respiratory syndrome virus infection by recombinant adenovirus- and/or exosome-delivered the artificial microRNAs targeting sialoadhesin and CD163 receptors[J]. Virol J, 2014, 11: 225. doi: 10.1186/s12985-014-0225-9
      [56]
      WHITWORTH K M, ROWLAND R R, EWEN C L, et al. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus[J]. Nat Biotechnol, 2016, 34(1): 20-22. doi: 10.1038/nbt.3434
      [57]
      PRATHER R S, ROWLAND R R, EWEN C, et al. An intact sialoadhesin (Sn/SIGLEC1/CD169) is not required for attachment/internalization of the porcine reproductive and respiratory syndrome virus[J]. J Virol, 2013, 87(17): 9538-9546. doi: 10.1128/JVI.00177-13
      [58]
      WHITWORTH K M, LEE K, BENNE J A, et al. Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos[J]. Biol Reprod, 2014, 91(3): 78.
      [59]
      BURKARD C, LILLICO S G, REID E, et al. Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function[J]. PLoS Pathog, 2017, 13(2): e1006206. doi: 10.1371/journal.ppat.1006206
      [60]
      BURKARD C, OPRIESSNIG T, MILEHAM A J, et al. Pigs lacking the scavenger receptor cysteine-rich domain 5 of CD163 are resistant to porcine reproductive and respiratory syndrome virus 1 infection[J]. J Virol, 2018, 92(16): e00415-18.
      [61]
      CHEN J, WANG H, BAI J, et al. Generation of pigs resistant to highly pathogenic-porcine reproductive and respiratory syndrome virus through gene editing of CD163[J]. Int J Biol Sci, 2019, 15(2): 481-492. doi: 10.7150/ijbs.25862
      [62]
      YANG H, ZHANG J, ZHANG X, et al. CD163 knockout pigs are fully resistant to highly pathogenic porcine reproductive and respiratory syndrome virus[J]. Antiviral Res, 2018, 151: 63-70. doi: 10.1016/j.antiviral.2018.01.004
      [63]
      WELLS K D, BARDOT R, WHITWORTH K M, et al. Replacement of porcine CD163 scavenger receptor cysteine-rich domain 5 with a CD163-like homolog confers resistance of pigs to genotype 1 but not genotype 2 porcine reproductive and respiratory syndrome virus[J]. J Virol, 2017, 91(2): e01521-16.
      [64]
      KARALYAN Z, ZAKARYAN H, ARAKELOVA E, et al. Evidence of hemolysis in pigs infected with highly virulent African swine fever virus[J]. Vet World, 2016, 9(12): 1413-1419. doi: 10.14202/vetworld.
      [65]
      LILLICO S G, PROUDFOOT C, KING T J, et al. Mammalian interspecies substitution of immune modulatory alleles by genome editing[J]. Sci Rep, 2016, 6: 21645. doi: 10.1038/srep21645
      [66]
      PAN D, LIU T, LEI T, et al. Progress in multiple genetically modified minipigs for xenotransplantation in China[J]. Xenotransplantation, 2019, 26(1): e12492.
      [67]
      WANG Y, LEI T, WEI L, et al. Xenotransplantation in China: Present status[J]. Xenotransplantation, 2019, 26(1): e12490.
      [68]
      高孟雨, 杨光, 包骥. 利用CRISPR/Cas9技术繁育基因修饰猪在医学领域的研究进展[J]. 生物医学工程学杂志, 2018, 35(4): 637-642.
      [69]
      黄耀强, 李国玲, 杨化强, 等. 基因编辑猪在生物医学研究中的应用[J]. 遗传, 2018, 40(8): 632-646.
      [70]
      BUTLER J R, WANG Z Y, MARTENS G R, et al. Modified glycan models of pig-to-human xenotransplantation do not enhance the human-anti-pig T cell response[J]. Transpl Immunol, 2016, 35: 47-51. doi: 10.1016/j.trim.2016.02.001
      [71]
      ESTRADA J L, MARTENS G, LI P, et al. Evaluation of human and non-human primate antibody binding to pig cells lacking GGTA1/CMAH/beta4GalNT2 genes[J]. Xenotransplantation, 2015, 22(3): 194-202. doi: 10.1111/xen.2015.22.issue-3
      [72]
      杨化强, 赖良学. 基因修饰猪作为人类疾病模型的研究进展[J]. 科技导报, 2011, 29(30): 57-62. doi: 10.3981/j.issn.1000-7857.2011.30.008
      [73]
      曾芳, 李紫聪, 董锐, 等. 转基因猪技术及其在农业上的应用[J]. 畜牧兽医学报, 2016, 47(2): 218-224.
      [74]
      廖莎, 李国玲, 吴珍芳, 等. 转基因动植物生物反应器研究进展及应用现状[J]. 广东农业科学, 2018, 45(11): 126-136.
      [75]
      LEE M H, LIN Y S, TU C F, et al. Recombinant human factor IX produced from transgenic porcine milk[J]. Biomed Res Int, 2014, 2014: 315375.
      [76]
      LU D, LIU S, SHANG S, et al. Production of transgenic-cloned pigs expressing large quantities of recombinant human lysozyme in milk[J]. PLoS One, 2015, 10(5): e123551.
      [77]
      MA J, LI Q, LI Y, et al. Expression of recombinant human alpha-lactalbumin in milk of transgenic cloned pigs is sufficient to enhance intestinal growth and weight gain of suckling piglets[J]. Gene, 2016, 584(1): 7-16. doi: 10.1016/j.gene.2016.02.024
      [78]
      PARK J K, LEE Y K, LEE P, et al. Recombinant human erythropoietin produced in milk of transgenic pigs[J]. J Biotechnol, 2006, 122(3): 362-371. doi: 10.1016/j.jbiotec.2005.11.021
      [79]
      TONG J, WEI H, LIU X, et al. Production of recombinant human lysozyme in the milk of transgenic pigs[J]. Transgenic Res, 2011, 20(2): 417-419. doi: 10.1007/s11248-010-9409-2
      [80]
      GORDON K, LEE E, VITALE J A, et al. Production of human tissue plasminogen activator in transgenic mouse milk[J]. Biotechnology, 1992, 24: 425-428.
      [81]
      BLECK G T, WHITE B R, MILLER D J, et al. Production of bovine alpha-lactalbumin in the milk of transgenic pigs[J]. J Anim Sci, 1998, 76(12): 3072-3078. doi: 10.2527/1998.76123072x
      [82]
      FANALI G, DI MASI A, TREZZA V, et al. Human serum albumin: From bench to bedside[J]. Mol Aspects Med, 2012, 33(3): 209-290. doi: 10.1016/j.mam.2011.12.002
      [83]
      PENG J, WANG Y, JIANG J, et al. Production of human albumin in pigs through CRISPR/Cas9-mediated knockin of human cDNA into swine albumin locus in the zygotes[J]. Sci Rep, 2015, 5: 16705. doi: 10.1038/srep16705
      [84]
      LI L, MENG H, ZOU Q, et al. Establishment of gene-edited pigs expressing human blood-coagulation factor VII and albumin for bioartificial liver use[J]. J Gastroenterol Hepatol, 2019.
      [85]
      ZENG F, LI Z, ZHU Q, et al. Production of functional human nerve growth factor from the saliva of transgenic mice by using salivary glands as bioreactors[J]. Sci Rep, 2017, 7: 41270. doi: 10.1038/srep41270
      [86]
      HAI T, TENG F, GUO R, et al. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system[J]. Cell Res, 2014, 24(3): 372-375. doi: 10.1038/cr.2014.11
      [87]
      ZHOU X, XIN J, FAN N, et al. Generation of CRISPR/Cas9-mediated gene-targeted pigs via somatic cell nuclear transfer[J]. Cell Mol Life Sci, 2015, 72(6): 1175-1184. doi: 10.1007/s00018-014-1744-7
      [88]
      YANG D, YANG H, LI W, et al. Generation of PPAR gamma mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning[J]. Cell Res, 2011, 21(6): 979-982. doi: 10.1038/cr.2011.70
      [89]
      CARLSON D F, FAHRENKRUG S C, HACKETT P B. Targeting DNA with fingers and TALENs[J]. Mol Ther Nucleic Acids, 2012, 1: e3.
      [90]
      WANG Y, DU Y, SHEN B, et al. Efficient generation of gene-modified pigs via injection of zygote with Cas9/sgRNA[J]. Sci Rep, 2015, 5: 8256. doi: 10.1038/srep08256
      [91]
      HUANG L, HUA Z, XIAO H, et al. CRISPR/Cas9-mediated ApoE-/- and LDLR-/- double gene knockout in pigs elevates serum LDL-C and TC levels[J]. Oncotarget, 2017, 8(23): 37751-37760.
      [92]
      HOLM I E, ALSTRUP A K, LUO Y. Genetically modified pig models for neurodegenerative disorders[J]. J Pathol, 2016, 238(2): 267-287. doi: 10.1002/path.4654
      [93]
      YANG H, WANG G, SUN H, et al. Species-dependent neuropathology in transgenic SOD1 pigs[J]. Cell Res, 2014, 24(4): 464-481. doi: 10.1038/cr.2014.25
      [94]
      WANG G, YANG H, YAN S, et al. Cytoplasmic mislocalization of RNA splicing factors and aberrant neuronal gene splicing in TDP-43 transgenic pig brain[J]. Mol Neurodegener, 2015, 10: 42. doi: 10.1186/s13024-015-0036-5
      [95]
      UCHIHARA Y, KATAOKA H, YOSHINO H, et al. Parkin mutation may be associated with serious akinesia in a patient with Parkinson's disease[J]. J Neurol Sci, 2017, 379: 119-121. doi: 10.1016/j.jns.2017.05.065
      [96]
      VALENTE E M, SALVI S, IALONGO T, et al. PINK1 mutations are associated with sporadic early-onset parkinsonism[J]. Ann Neurol, 2004, 56(3): 336-341. doi: 10.1002/(ISSN)1531-8249
      [97]
      ZHOU X, WANG L, Du Y, et al. Efficient generation of gene-modified pigs harboring precise orthologous human mutation via CRISPR/Cas9-induced homology-directed repair in zygotes[J]. Hum Mutat, 2016, 37(1): 110-118. doi: 10.1002/humu.22913
      [98]
      WANG X, CAO C, HUANG J, et al. One-step generation of triple gene-targeted pigs using CRISPR/Cas9 system[J]. Sci Rep, 2016, 6: 20620. doi: 10.1038/srep20620
      [99]
      UCHIDA M, SHIMATSU Y, ONOE K, et al. Production of transgenic miniature pigs by pronuclear microinjection[J]. Transgenic Res, 2001, 10(6): 577-582. doi: 10.1023/A:1013059917280
      [100]
      YANG D, WANG C E, ZHAO B, et al. Expression of Huntington’s disease protein results in apoptotic neurons in the brains of cloned transgenic pigs[J]. Hum Mol Genet, 2010, 19(20): 3983-3994. doi: 10.1093/hmg/ddq313
      [101]
      BAXA M, HRUSKA-PLOCHAN M, JUHAS S, et al. A transgenic minipig model of Huntington’s disease[J]. J Huntingtons Dis, 2013, 2(1): 47-68.
      [102]
      ROGERS C S, HAO Y, ROKHLINA T, et al. Production of CFTR-null and CFTR-DeltaF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer[J]. J Clin Invest, 2008, 118(4): 1571-1577. doi: 10.1172/JCI34773
      [103]
      ROGERS C S, STOLTZ D A, MEYERHOLZ D K, et al. Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs[J]. Science, 2008, 321(5897): 1837-1841. doi: 10.1126/science.1163600
      [104]
      KLYMIUK N, BLUTKE A, GRAF A, et al. Dystrophin-deficient pigs provide new insights into the hierarchy of physiological derangements of dystrophic muscle[J]. Hum Mol Genet, 2013, 22(21): 4368-4382. doi: 10.1093/hmg/ddt287
      [105]
      YU H H, ZHAO H, QING Y B, et al. Porcine zygote injection with Cas9/sgRNA results in DMD-modified pig with muscle dystrophy[J]. Int J Mol Sci, 2016, 17(10).
      [106]
      FLISIKOWSKA T, MERKL C, LANDMANN M, et al. A porcine model of familial adenomatous polyposis[J]. Gastroenterology, 2012, 143(5): 1173-1175. doi: 10.1053/j.gastro.2012.07.110
      [107]
      SIKORSKA A, FLISIKOWSKA T, STACHOWIAK M, et al. Elevated expression of p53 in early colon polyps in a pig model of human familial adenomatous polyposis[J]. J Appl Genet, 2018, 59(4): 485-491. doi: 10.1007/s13353-018-0461-6
      [108]
      ZHANG Y, XUE Y, CAO C, et al. Thyroid hormone regulates hematopoiesis via the TR-KLF9 axis[J]. Blood, 2017, 130(20): 2161-2170. doi: 10.1182/blood-2017-05-783043
      [109]
      KANG J T, RYU J, CHO B, et al. Generation of RUNX3 knockout pigs using CRISPR/Cas9-mediated gene targeting[J]. Reprod Domest Anim, 2016, 51(6): 970-978. doi: 10.1111/rda.2016.51.issue-6
      [110]
      GAO X, TAO Y, LAMAS V, et al. Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents[J]. Nature, 2018, 553(7687): 217-221. doi: 10.1038/nature25164
      [111]
      ROSS J W, FERNANDEZ D C J, ZHAO J, et al. Generation of an inbred miniature pig model of retinitis pigmentosa[J]. Invest Ophthalmol Vis Sci, 2012, 53(1): 501-507. doi: 10.1167/iovs.11-8784
      [112]
      HE J, LI Q, FANG S, et al. PKD1 mono-allelic knockout is sufficient to trigger renal cystogenesis in a mini-pig model[J]. Int J Biol Sci, 2015, 11(4): 361-369. doi: 10.7150/ijbs.10858
      [113]
      COOPER D K, SATYANANDA V, EKSER B, et al. Progress in pig-to-non-human primate transplantation models (1998-2013): A comprehensive review of the literature[J]. Xenotransplantation, 2014, 21(5): 397-419. doi: 10.1111/xen.2014.21.issue-5
      [114]
      LAI L, KOLBER-SIMONDS D, PARK K W, et al. Production of α-1, 3-galactosyltransferase knockout pigs by nuclear transfer cloning[J]. Science, 2002, 295(5557): 1089-1092. doi: 10.1126/science.1068228
      [115]
      DAI Y, VAUGHT T D, BOONE J, et al. Targeted disruption of the α1, 3-galactosyltransferase gene in cloned pigs[J]. Nat Biotechnol, 2002, 20(3): 251-255. doi: 10.1038/nbt0302-251
      [116]
      HAUSCHILD J, PETERSEN B, SANTIAGO Y, et al. Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases[J]. Proc Natl Acad Sci USA, 2011, 108(29): 12013-12017. doi: 10.1073/pnas.1106422108
      [117]
      XIN J, YANG H, FAN N, et al. Highly efficient generation of GGTA1 biallelic knockout inbred mini-pigs with TALENs[J]. PLoS One, 2013, 8(12): e84250. doi: 10.1371/journal.pone.0084250
      [118]
      KANG J T, KWON D K, PARK A R, et al. Production of α1, 3-galactosyltransferase targeted pigs using transcription activator-like effector nuclease-mediated genome editing technology[J]. J Vet Sci, 2016, 17(1): 89-96. doi: 10.4142/jvs.2016.17.1.89
      [119]
      CHUANG C K, CHEN C H, HUANG C L, et al. Generation of GGTA1 mutant pigs by direct pronuclear microinjection of CRISPR/Cas9 plasmid vectors[J]. Anim Biotechnol, 2017, 28(3): 174-181. doi: 10.1080/10495398.2016.1246453
      [120]
      LUTZ A J, LI P, ESTRADA J L, et al. Double knockout pigs deficient in N-glycolylneuraminic acid and galactose α-1, 3-galactose reduce the humoral barrier to xenotransplantation[J]. Xenotransplantation, 2013, 20(1): 27-35. doi: 10.1111/xen.2013.20.issue-1
      [121]
      LI P, ESTRADA J L, BURLAK C, et al. Efficient generation of genetically distinct pigs in a single pregnancy using multiplexed single-guide RNA and carbohydrate selection[J]. Xenotransplantation, 2015, 22(1): 20-31. doi: 10.1111/xen.2015.22.issue-1
      [122]
      DENNER J. Why was PERV not transmitted during preclinical and clinical xenotransplantation trials and after inoculation of animals?[J]. Retrovirology, 2018, 15(1): 28. doi: 10.1186/s12977-018-0411-8
      [123]
      李晓开, 龙科任, 麦苗苗, 等. CRISPR-Cas9技术的原理及其在猪研究中的应用[J]. 生命科学, 2018, 30(6): 690-700.
      [124]
      YANG L, GUELL M, NIU D, et al. Genome-wide inactivation of porcine endogenous retroviruses (PERVs)[J]. Science, 2015, 350(6264): 1101-1104. doi: 10.1126/science.aad1191
      [125]
      NIU D, WEI H J, LIN L, et al. Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9[J]. Science, 2017, 357(6357): 1303-1307. doi: 10.1126/science.aan4187
    • Cited by

      Periodical cited type(6)

      1. 刘雨滢,杜婷,付奕博,叶鑫煜,闫佳慧,卢玉婷. 丁酸梭菌的功能及其在水产养殖业中的应用. 饲料研究. 2025(05): 159-162 .
      2. 周秀珍,刘滔,张毅,王扬,赵敏洁,王旭堂,黄菊,冯凤琴. 混合益生菌对大口黑鲈生长性能、肉品质及肠道健康的影响. 动物营养学报. 2024(07): 4588-4609 .
      3. 常静,万建美. 丁酸梭菌调控动物肠道健康的研究进展. 饲料研究. 2024(16): 172-176 .
      4. 亓秀晔,张修,张冠军,陈静,徐龙飞. 一株丁酸梭菌冻干菌粉的获得及体内安全性评价. 家畜生态学报. 2024(10): 29-35 .
      5. 庞孟瑶. 日粮中添加丁酸梭菌对蛋鸡生产性能、血清生化指标及经济效益的影响. 饲料研究. 2023(05): 46-50 .
      6. 徐亚飞. 丁酸梭菌在水产养殖中的研究及应用进展. 水产养殖. 2023(08): 18-23 .

      Other cited types(5)

    Catalog

      Article views PDF downloads Cited by(11)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return