Citation: | XIE Qingmei, FENG Keyu, SHEN Yong. Advances in recombinant live vector vaccines for animal viruses[J]. Journal of South China Agricultural University, 2019, 40(5): 102-110. DOI: 10.7671/j.issn.1001-411X.201905060 |
As a new type of vaccine, virus live vector vaccine has great advantages and application prospects compared with traditional vaccine, and it’s an important direction of current and future vaccine development. At present, in the fields of human medicine and veterinary medicine, virus live vector vaccine has achieved a lot of research achievements. In this paper, the latest research progress of main veterinary virus vaccine vectors and recombinant live vector vaccines were reviewed, and their development trends were analyzed, so as to provide a reference for the further development of new recombinant virus vaccines.
[1] |
COSTA C D, WALKER B, BONAVIA A. Tuberculosis vaccines:State of the art, and novel approaches to vaccine development[J]. Int J Infect Dis, 2015, 32: 5-12.
|
[2] |
DRAPER S, HEENEY J. Viruses as vaccine vectors for infectious diseases and cancer[J]. Nat Rev Microbiol, 2010, 8(1): 62-73. doi: 10.1038/nrmicro2240
|
[3] |
JORGE S, DELLAGOSTIN O A. The development of veterinary vaccines: A review of traditional methods and modern biotechnology approaches[J]. Biotechnol Res Innov, 2017, 1(1): 6-13. doi: 10.1016/j.biori.2017.10.001
|
[4] |
ERTL H C J. Viral vectors as vaccine carriers[J]. Curr Opin Virol, 2016, 21: 1-8. doi: 10.1016/j.coviro.2016.06.001
|
[5] |
MACKETT M, SMITH G L, MOSS B. Vaccinia virus: A selectable eukaryotic cloning and expression vector[J]. Proc Natl Acad Sci USA, 1982, 79(23): 7415-7419. doi: 10.1073/pnas.79.23.7415
|
[6] |
FAKRI F, BAMOUH Z, GHZAL F, et al. Comparative evaluation of three capripoxvirus-vectored peste des petits ruminants vaccines[J]. Virology, 2018, 514: 211-215. doi: 10.1016/j.virol.2017.11.015
|
[7] |
郭巍, 曲娟娟, 相文华, 等. 通用山羊痘病毒TK基因缺失转移载体的构建[J]. 吉林农业大学学报, 2008, 30(5): 739-742.
|
[8] |
金宁一, 刘毅, 郭志儒, 等. 重组传染性法氏囊病病毒VP2/VP243基因表达及保护性和免疫原性[J]. 中国生物制品学杂志, 2000, 13(1): 2-5. doi: 10.3969/j.issn.1004-5503.2000.01.002
|
[9] |
庞乐君, 刁天喜. 痘病毒疫苗载体[J]. 国际药学研究杂志, 2004, 31(3): 154-157.
|
[10] |
孙蕾, 吴艳涛, 张体银, 等. 鸡痘病毒通用高效表达载体的构建及其初步应用[J]. 中国兽医学报, 2004, 24(5): 429-432. doi: 10.3969/j.issn.1005-4545.2004.05.005
|
[11] |
OKOLI A, OKEKE M I, TRYLAND M, et al. CRISPR/Cas9: Advancing orthopoxvirus genome editing for vaccine and vector development[J]. Viruses, 2018, 10(1): 50-76. doi: 10.3390/v10010050
|
[12] |
郝晓芳, 张加勇, 徐佳, 等. 重组病毒载体疫苗的研究进展[J]. 黑龙江畜牧兽医, 2016(13): 68-71.
|
[13] |
刘毅, 金宁一, 郭志儒, 等. 传染性法氏囊病病毒VP2/VP0基因在重组鸡痘病毒中的表达[J]. 中国兽医学报, 1999, 19(2): 126-128. doi: 10.3969/j.issn.1005-4545.1999.02.008
|
[14] |
LEE L F, BACON L D, YOSHIDA S, et al. The efficacy of recombinant fowlpox vaccine protection against marek's disease: Its dependence on chicken line and B haplotype[J]. Avi Dis, 2004, 48(1): 129-137. doi: 10.1637/7083
|
[15] |
HEINE H G, FOORD A J, YOUNG P L, et al. Recombinant fowlpox virus vaccines against Australian virulent marek's disease virus: Gene sequence analysis and comparison of vaccine efficacy in specific pathogen free and production chickens[J]. Vir Res, 1997, 50(1): 23-33. doi: 10.1016/S0168-1702(97)00049-X
|
[16] |
姬向波. 传染性喉气管炎(ILTV)重组鸡痘病毒(rFPV-gB-gD-IgG)和DNA(pcDNA-gB)疫苗对鸡免疫效果的研究[D]. 南京: 南京农业大学, 2006.
|
[17] |
姬向波, 刘文波, 魏建超, 等. 鸡传染性喉气管炎病毒gB基因重组DNA疫苗的构建与免疫试验[J]. 中国病毒学, 2006, 21(5): 481-484.
|
[18] |
管倩. 鸡传染性支气管炎病毒S1基因与鸡IL-18基因在禽痘病毒载体中的共表达[D]. 郑州: 河南农业大学, 2008.
|
[19] |
TIAN Z C, SUN Y K, WANG Y F, et al. The immunological efficacies of recombinant fowlpox virus expressing the S1 gene of LX4 strain of infectious bronchitis virus in specific-pathogen-free (SPF) chickens[J]. Acta Vet Et Zoo techn Sin, 2006, 37(6): 580-586.
|
[20] |
沈国顺, 金宁一, 秦晓光, 等. 表达PRRSV GP5、GP3和猪IL-18的重组鸡痘病毒的构建及鉴定[J]. 中国生物制品学杂志, 2006, 19(6): 583-585. doi: 10.3969/j.issn.1004-5503.2006.06.010
|
[21] |
许晨旭. 共表达H5亚型AIV HA基因和鸡IL-6基因重组鸡痘病毒的构建及免疫效力评价[D].扬州: 扬州大学, 2014.
|
[22] |
王振国, 金宁一, 马鸣啸, 等. 共表达H5亚型AIV HA基因与鸡IL-18基因的重组鸡痘病毒的构建[J]. 中国兽医学报, 2006, 26(4): 390-393.
|
[23] |
程坚, 刘秀梵, 彭大新, 等. 表达鸡Ⅱ型干扰素基因的重组鸡痘病毒的构建[J]. 农业生物技术学报, 2002, 10(2): 152-155. doi: 10.3969/j.issn.1674-7968.2002.02.012
|
[24] |
李继东, 才学鹏. O型口蹄疫病毒VP1基因重组山羊痘病毒活载体疫苗的研究[J]. 宁夏大学学报(自然版), 2017, 38(4): 371-376.
|
[25] |
文明, 程振涛, 岳筠, 等. 山羊痘病毒P32基因序列分析及其B细胞表位预测[J]. 生物技术, 2007, 17(5): 12-14. doi: 10.3969/j.issn.1004-311X.2007.05.005
|
[26] |
孙一瑞, 张敏敏, 李翠翠, 等. 采用非洲地区广泛应用的绵羊痘弱毒株构建表达小反刍兽疫病毒H蛋白的重组疫苗[J]. 中国预防兽医学报, 2018, 40(3): 226-229.
|
[27] |
冯杰, 崔燕, 余四九, 等. 羊痘病毒及其载体研究进展[J]. 贵州畜牧兽医, 2018(1). doi: 10.3969/j.issn.1007-1474.2018.01.023
|
[28] |
范红结, 蔺辉星, 陆承平. 表达猪圆环病毒2型Cap蛋白的重组猪痘病毒载体疫苗及其制备方法: CN201210340309.6[P]. 2012-12-19.
|
[29] |
黄冬艳. 表达猪链球菌2型保护性抗原重组猪痘病毒的构建、特性分析及其小鼠免疫评估[D]. 南京: 南京农业大学, 2011.
|
[30] |
LAN D, SHI X, WANG Y, et al. Construction of a recombinant HVT virus expressing the HA gene of avian influenza virus H5N1 via Rde/ET recombination system[J]. Acta Microbiol Sin, 2009, 49(1): 78-84.
|
[31] |
于之清, 童武, 郑浩, 等. 使用CRISPR/Cas9技术构建新型重组伪狂犬病毒疫苗的初步研究[J]. 中国动物传染病学报, 2017, 25(4): 6-12.
|
[32] |
邹忠, 黄坤, 金梅林. 基于CRISPR/Cas9技术构建鸭肠炎病毒载体–禽流感–鸭坦布苏病毒基因工程三价疫苗[C]//中国畜牧兽医学会.中国畜牧兽医学会生物技术学分会暨屮国免疫学会兽医免疫分会第十二次学术研讨会论文集.昆明: 哈尔滨维科生物技术开发公司, 2016: 266.
|
[33] |
王林青, 郑兰兰, 李坤, 等. 猪伪狂犬病病毒载体重组疫苗研究进展[J]. 中国预防兽医学报, 2014, 36(2): 160-164. doi: 10.3969/j.issn.1008-0589.2014.02.18
|
[34] |
吴昌义, 林瑞庆, 袁子国. 伪狂犬病毒作为疫苗载体的研究进展[J]. 黑龙江畜牧兽医, 2010(15): 30-32.
|
[35] |
LEI J L, XIA S L, WANG Y M, et al. Safety and immunogenicity of a gE/gI/TK gene-deleted pseudorabies virus variant expressing the E2 protein of classical swine fever virus in pigs[J]. Immunol Lett, 2016, 174: 63-71. doi: 10.1016/j.imlet.2016.04.014
|
[36] |
KLINGBEIL K, LANGE E, TEIFKE J P, et al. Immunization of pigs with an attenuated pseudorabies virus recombinant expressing the haemagglutinin of pandemic swine origin H1N1 influenza A virus[J]. J Gen Virol, 2014, 95(4): 948-959.
|
[37] |
HONG Q, QIAN P, LI X, et al. A recombinant pseudorabies virus co-expressing capsid proteins precursor P1-2A of FMDV and VP2 protein of porcine parvovirus: A trivalent vaccine candidate[J]. Biotechnol Lett, 2007, 29(11): 1677-1683. doi: 10.1007/s10529-007-9459-6
|
[38] |
徐高原, 陈焕春, 徐晓娟, 等. 乙型脑炎重组伪狂犬病病毒TK-/gG-/NS1+的安全性及免疫性[J]. 中国兽医学报, 2004, 24(2): 145-147. doi: 10.3969/j.issn.1005-4545.2004.02.014
|
[39] |
邓晓辉. 共表达猪细小病毒VP2和猪圆环病毒2型Cap的重组伪狂犬病毒的构建及其鉴定[D]. 泰安: 山东农业大学, 2012.
|
[40] |
WEI F, ZHAI Y J, JIN H T, et al. Development and immunogenicity of a recombinant pseudorabies virus expressing Sj26GST and SjFABP from Schistosoma japonicum[J]. Vaccine, 2010, 28(32): 5161-5166. doi: 10.1016/j.vaccine.2010.06.012
|
[41] |
NIE H, FANG R, XIONG B Q, et al. Immunogenicity and protective efficacy of two recombinant pseudorabies viruses expressing Toxoplasma gondii SAG1 and MIC3 proteins[J]. Vet Parasitol, 2011, 181(2/3/4): 215-221.
|
[42] |
BAIGENT S J, PETHERBRIDGE L J, SMITH L P, et al. Herpesvirus of turkey reconstituted from bacterial artificial chromosome clones induces protection against Marek's disease[J]. J Gen Virol, 2006, 87(4): 769-776. doi: 10.1099/vir.0.81498-0
|
[43] |
IQBAL M. Progress toward the development of polyvalent vaccination strategies against multiple viral infections in chickens using herpesvirus of turkeys as vector[J]. Bioengineered, 2012, 3(4): 222-226. doi: 10.4161/bioe.20476
|
[44] |
GERGEN L, COOK S, LEDESMA B, et al. A double recombinant herpes virus of turkeys for the protection of chickens against Newcastle, infectious laryngotracheitis and Marek’s diseases[J]. Avian Pathol, 2019, 48(1): 45-56. doi: 10.1080/03079457.2018.1546376
|
[45] |
赵冬凤, 高轩, 刘新文, 等. 表达H5N1亚型禽流感HA-NA基因重组火鸡疱疹病毒的构建[J]. 中国动物检疫, 2008, 25(4): 20-22. doi: 10.3969/j.issn.1005-944X.2008.04.012
|
[46] |
SHARMA J M, ZHANG Y, JENSEN D, et al. Field trial in commercial broilers with a multivalent in ovo vaccine comprising a mixture of live viral vaccines against Marek's disease, infectious bursal disease, newcastle disease, and fowl pox[J]. Avian Dis, 2002, 46(3): 613-622. doi: 10.1637/0005-2086(2002)046[0613:FTICBW]2.0.CO;2
|
[47] |
DARTEIL R, BUBLOT M, LAPLACE E, et al. Herpesvirus of turkey recombinant viruses expressing infectious bursal disease virus (IBDV) VP2 immunogen induce protection against an IBDV virulent challenge in chickens[J]. Virology, 1995, 211(2): 481-490. doi: 10.1006/viro.1995.1430
|
[48] |
LIU Y, LI K, GAO Y, et al. Recombinant Marek’s disease virus as a vector-based vaccine against avian leukosis virus subgroup J in chicken[J]. Viruses, 2016, 8(11): 301-313. doi: 10.3390/v8110301
|
[49] |
CRONENBERG A M, VAN GEFFEN C E, DORRESTEIN J, et al. Vaccination of broilers with HVT expressing an Eimeria acervulina antigen improves performance after challenge with Eimeria[J]. Acta Virol, 1999, 43(2/3): 192.
|
[50] |
何诚, 刘杉杉, 褚军, 等. 鹦鹉热衣原体重组HVT活载体疫苗的构建与免疫效力测定[C]// 中国畜牧兽医学会2014年学术年会论文集. 广州: 中国畜牧兽医学会, 2014: 243.
|
[51] |
Merial. VAXXITEK[R/OL]. (2016–02–12)[2019–04–13]. https://www.merial.us/vaxxitek.aspx.
|
[52] |
Ceva. VECTORMUNE.[R/OL]. (2014–04–15)[2019–04–12]. https://www.vectormune.com/.
|
[53] |
MSD. INNOVAX.[R/OL]. (2015–06–22)[2019–04–12]. https://www.innovax-vaccines.com/.
|
[54] |
PETHERBRIDGE L, XU H, ZHAO Y, et al. Cloning of Gallid herpesvirus 3 (Marek’s disease virus serotype-2) genome as infectious bacterial artificial chromosomes for analysis of viral gene functions[J]. J Virol Meth, 2009, 158(1): 11-17.
|
[55] |
ISHIHARA Y, ESAKI M, SAITOH S, et al. Combination of two Marek’s disease virus vectors shows effective vaccination against Marek’s disease, infectious bursal disease, and newcastle disease[J]. Avian Dis, 2016, 60(2): 473. doi: 10.1637/11359-122615-RegR
|
[56] |
LIU X, WEI S, LIU Y, et al. Recombinant duck enteritis virus expressing the HA gene from goose H5 subtype avian influenza virus[J]. Vaccine, 2013, 31(50): 5953-5959. doi: 10.1016/j.vaccine.2013.10.035
|
[57] |
WANG J, GE A, XU M, et al. Construction of a recombinant duck enteritis virus (DEV) expressing hemagglutinin of H5N1 avian influenza virus based on an infectious clone of DEV vaccine strain and evaluation of its efficacy in ducks and chickens[J]. Virol J, 2015, 12: 126-139. doi: 10.1186/s12985-015-0354-9
|
[58] |
ZOU Z, MA J, HUANG K, et al. Live attenuated vaccine based on duck enteritis virus against duck hepatitis a virus types 1 and 3[J]. Front Microbiol, 2016, 7: 1613.
|
[59] |
陈柳, 余斌, 倪征, 等. 表达小鹅瘟病毒VP2蛋白重组鸭瘟病毒的构建及其生物学特性[J]. 中国农业科学, 2016, 49(14): 2813-2821. doi: 10.3864/j.issn.0578-1752.2016.14.015
|
[60] |
陈柳, 余斌, 倪征, 等. 表达鸭坦布苏病毒E蛋白的重组鸭瘟病毒的构建及其生物学特性[J]. 浙江农业学报, 2015, 27(11): 1889-1895. doi: 10.3969/j.issn.1004-1524.2015.11.05
|
[61] |
ZOU Z, HUANG K, WEI Y, et al. Construction of a highly efficient CRISPR/Cas9-mediated duck enteritis virus-based vaccine against H5N1 avian influenza virus and duck Tembusu virus infection[J/OL]. Sci Rep, 2017, 7: 1478. [2019-04-15]. https://doi.org/10.1038/s41598-017-01554-1.
|
[62] |
PAVLOVA S, VEITS J, METTENLEITER T C, et al. Identification and functional analysis of membrane proteins gD, gE, gI, and pUS9 of Infectious laryngotracheitis virus[J]. Avian Dis, 2013, 57(S2): 416-426.
|
[63] |
VEITS J, METTENLEITER T C, FUCHS W. Five unique open reading frames of infectious laryngotracheitis virus are expressed during infection but are dispensable for virus replication in cell culture[J]. J Gen Virol, 2003, 84(6): 1415-1425. doi: 10.1099/vir.0.18926-0
|
[64] |
SHAO Y, SUN J, HAN Z, et al. Recombinant infectious laryngotracheitis virus expressing Newcastle disease virus F protein protects chickens against infectious laryngotracheitis virus and Newcastle disease virus challenge[J]. Vaccine, 2018, 36(52): 7975-7986. doi: 10.1016/j.vaccine.2018.11.008
|
[65] |
EWER K J, LAMBE T, ROLLIER C S, et al. Viral vectors as vaccine platforms: From immunogenicity to impact[J]. Curr Opin Immunol, 2016, 41: 47-54. doi: 10.1016/j.coi.2016.05.014
|
[66] |
ZHU J, HUANG X, YANG Y. Innate immune response to adenoviral vectors is mediated by both toll-like receptor-dependent and -independent pathways[J]. J Virol, 2007, 81(7): 3170-3180. doi: 10.1128/JVI.02192-06
|
[67] |
ALCOCK R, COTTINGHAM M G, ROLLIER C S, et al. Long-term thermostabilization of live poxviral and adenoviral vaccine vectors at supraphysiological temperatures in carbohydrate glass[J]. Sci Transl Med, 2010, 2(19): 12-19.
|
[68] |
ALI M, LEMOINE N R, RING C J. The use of DNA viruses as vectors for gene therapy[J]. Gen Ther, 1994, 1(6): 367-384.
|
[69] |
MORRAL N, O'NEAL W, RICE K, et al. Administration of helper-dependent adenoviral vectors and sequential delivery of different vector serotype for long-term liver-directed gene transfer in baboons[J]. Proc Natl Acad Sci USA, 1999, 96(22): 12816-12821. doi: 10.1073/pnas.96.22.12816
|
[70] |
WARIMWE G M, GESHARISHA J, CARR B V, et al. Chimpanzee adenovirus vaccine provides multispecies protection against rift valley fever[J/OL]. Sci Rep, 2016, 6: 20617. [2019-04-16]. https://doi.org/10.1038/srep20617.
|
[71] |
PANNIPA C, PAKAMATZ K, PIYALAMPORN H, et al. Cost comparison of rabies pre-exposure vaccination with post-exposure treatment in Thai children[J]. Vaccine, 2006, 24(9): 1478-1482. doi: 10.1016/j.vaccine.2005.03.059
|
[72] |
潘群兴, 王永山, 何孔旺, 等. 传染性法氏囊病病毒株VP2基因在重组腺病毒中的表达[J]. 中国兽医学报, 2010, 30(3): 312-316.
|
[73] |
耿合员, 孙元, 韩宗玺, 等. 表达鸡传染性支气管炎病毒S1基因重组腺病毒的构建[J]. 中国预防兽医学报, 2011, 33(3): 173-176. doi: 10.3969/j.issn.1008-0589.2011.03.02
|
[74] |
HASSAN A O, AMEN O, SAYEDAHMED E E, et al. Adenovirus vector-based multi-epitope vaccine provides partial protection against H5, H7, and H9 avian influenza viruses[J]. PLoS One, 2017, 12(10): e186244.
|
[75] |
WANG X, WANG X, JIA Y, et al. Coadministration of recombinant adenovirus expressing GM-CSF with inactivated H5N1 avian influenza vaccine increased the immune responses and protective efficacy against a wild bird source of H5N1 challenge[J]. J Interferon Cytokine Res, 2017, 37(10): 467-473. doi: 10.1089/jir.2017.0043
|
[76] |
LIN S C, LIU W C, LIN Y F, et al. Heterologous prime-boost immunization regimens using adenovirus vector and virus-like particles induce broadly neutralizing antibodies against H5N1 avian influenza viruses[J]. Biotechnol J, 2013, 8(11): 1315-1322. doi: 10.1002/biot.v8.11
|
[77] |
MEDINA G N, MONTIEL N, STURZA D, et al. Evaluation in cattle of fiber-modified adenovirus vector-vaccine against foot-and-mouth disease[J]. Clin Vacc Immunol Cvi, 2015, 23(2): 415-426.
|
[78] |
SUN Y, TIAN D Y, Su L, et al. Comprehensive evaluation of the adenovirus/alphavirus-replicon chimeric vector-based vaccine rAdV-SFV-E2 against classical swine fever[J]. Vaccine, 2013, 31(3): 528-544.
|
[79] |
YUAN S, TIAN D Y, LI S, et al. Comprehensive evaluation of the adenovirus/alphavirus-replicon chimeric vector-based vaccine rAdV-SFV-E2 against classical swine fever[J]. Vaccine, 2013, 31(3): 538-544. doi: 10.1016/j.vaccine.2012.11.013
|
[80] |
ROJAS J M, MORENO H, VALCÁRCEL F, et al. Vaccination with recombinant adenoviruses expressing the peste des petits ruminants virus F or H proteins overcomes viral immunosuppression and induces protective immunity against PPRV challenge in sheep[J]. PLoS One, 2014, 9(7): e101226. doi: 10.1371/journal.pone.0101226
|
[81] |
HOLZER B, TAYLOR G, RAJKO-NENOW P, et al. Determination of the minimum fully protective dose of adenovirus-based DIVA vaccine against peste des petits ruminants virus challenge in East African goats[J]. Vet Res, 2016, 47(1): 1-6. doi: 10.1186/s13567-015-0288-7
|
[82] |
PEETERS B P, LEEUW O S D, KOCH G, et al. Rescue of Newcastle disease virus from cloned cDNA: Evidence that cleavability of the fusion protein is a major determinant for virulence[J]. J Virol, 1999, 73(6): 5001-5009.
|
[83] |
NAKAYA T, CROS J, PARK M S, et al. Recombinant Newcastle disease virus as a vaccine vector[J]. J Virol, 2001, 75(23): 11868-11873. doi: 10.1128/JVI.75.23.11868-11873.2001
|
[84] |
ZHAO W, ZHANG Z, ZSAK L, et al. P and M gene junction is the optimal insertion site in Newcastle disease virus vaccine vector for foreign gene expression[J]. J Gen Virol, 2015, 96(1): 40-45.
|
[85] |
STEGLICH C, GRUND C, RAMP K, et al. Chimeric newcastle disease virus protects chickens against avian influenza in the presence of maternally derived NDV immunity[J]. PLoS One, 2013, 8(9): e72530. doi: 10.1371/journal.pone.0072530
|
[86] |
KIM S, PALDURAI A, SAMAL S K. A novel chimeric Newcastle disease virus vectored vaccine against highly pathogenic avian influenza virus[J]. Virology, 2017, 503: 31-36. doi: 10.1016/j.virol.2017.01.006
|
[87] |
邹伟斌, 陈丹, 谢少霞, 等. 基因工程活载体疫苗的研究进展[J]. 广东畜牧兽医科技, 2016, 41(4): 1-5. doi: 10.3969/j.issn.1005-8567.2016.04.001
|
[88] |
ZHAO W, SPATZ S, ZHANG Z Y, et al. Newcastle disease virus (NDV) recombinants expressing infectious laryngotracheitis virus (ILTV) glycoproteins gB and gD protect chickens against ILTV and NDV challenges[J]. J Virol, 2014, 88(15): 8397-8406. doi: 10.1128/JVI.01321-14
|
[89] |
ZHAO R, SUN J, QI T, et al. Recombinant Newcastle disease virus expressing the infectious bronchitis virus S1 gene protects chickens against Newcastle disease virus and infectious bronchitis virus challenge[J]. Vaccine, 2017, 35(18): 2435-2442. doi: 10.1016/j.vaccine.2017.03.045
|
[90] |
柯勇, 肖贤, 毕波, 等. 表达猪流行性腹泻病毒纤突蛋白的重组水泡性口炎病毒构建和鉴定[J]. 畜牧与兽医, 2019, 51(2): 76-82.
|
[91] |
高飞, 曲泽慧, 姜一峰, 等. 重组猪瘟病毒C株E2蛋白的猪繁殖与呼吸综合征病毒的构建及鉴定[J]. 中国动物传染病学报, 2015, 23(5): 1-9. doi: 10.3969/j.issn.1674-6422.2015.05.001
|
[92] |
张挺杰, 刘星, 孙涛, 等. 表达猪圆环病毒2型ORF2基因的重组猪繁殖与呼吸综合征病毒的构建与鉴定[J]. 病毒学报, 2015(1): 65-73.
|
[93] |
ARMESTO M, EVANS S, CAVANAGH D, et al. A recombinant avian infectious bronchitis virus expressing a heterologous spike gene belonging to the 4/91 serotype[J]. PLoS One, 2011, 6(8): e24352. doi: 10.1371/journal.pone.0024352
|
[94] |
YANG X, ZHOU Y, LI J, et al. Recombinant infectious bronchitis virus (IBV) H120 vaccine strain expressing the hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) protects chickens against IBV and NDV challenge[J]. Arch Virol, 2016, 161(5): 1209-1216. doi: 10.1007/s00705-016-2764-4
|
[95] |
ARTURO R S, SARANYA S, TAMARA B, et al. Single-dose immunogenicity and protective efficacy of simian adenoviral vectors against Plasmodium berghei[J]. Eur J Immunol, 2010, 41(5): 732-741.
|