• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
WANG Zhangqiang, LI Ruixin, LU Yi, et al. Cd-tolerant germplasm screen and QTL identification of single-segment substitution lines of Oryza glumaepatula at the germination period[J]. Journal of South China Agricultural University, 2020, 41(1): 69-77. DOI: 10.7671/j.issn.1001-411X.201905023
Citation: WANG Zhangqiang, LI Ruixin, LU Yi, et al. Cd-tolerant germplasm screen and QTL identification of single-segment substitution lines of Oryza glumaepatula at the germination period[J]. Journal of South China Agricultural University, 2020, 41(1): 69-77. DOI: 10.7671/j.issn.1001-411X.201905023

Cd-tolerant germplasm screen and QTL identification of single-segment substitution lines of Oryza glumaepatula at the germination period

More Information
  • Received Date: May 12, 2019
  • Available Online: May 17, 2023
  • Objective 

    To evaluate effects of Cd stress on seed germination and growth of seminal root and shoot in chromosome single-segment substitution lines (SSSLs) of Oryza glumaepatula after seed germination, screen for Cd-tolerant SSSLs, and identify QTLs related to Cd-tolerant characters in bud.

    Method 

    The seed germination test was carried out using six varieties at CdCl2 concentrations of 0, 30, 50, 100, 500 μmol·L−1, and the proper treatment of CdCl2 concentration and the related character indexes to evaluate CdCl2 tolerance of SSSLs were determined. The lengths of seminal roots and shoots of experimental SSSLs were analyzed to screen for SSSLs with strong tolerance to CdCl2 at P=0.01 level and identify QTLs related to Cd-tolerant characters.

    Result 

    At the concentrations of 0, 30, 50, and 100 μmol·L−1 CdCl2, the seed germination rates of six varieties were distributed between 91%~95%, which were insignificant among different CdCl2 concentrations. However, the growth of seminal roots and shoots were significantly inhibited by CdCl2, and the significant differences were observed for the tolerance to CdCl2 among different varieties. Using relative root length and relative shoot length on the 7th day after germination as tolerance indexes, at the concentrations of 50 and 100 μmol·L−1, five relative root length QTLs including qRRL1-1, qRRL2-1, qRRL3-1, qRRL3-2 and qRRL6-1 were identified in eight SSSLs at P=0.01 level, the phenotypic contribution rates of additive effects ranged from 31.18% to 100.59%. Three relative shoot length QTLs including qRSL1-1, qRSL1-2, and qRSL2-1 were identified in five SSSLs, the phenotypic contribution rates of additive effects were 7.43%~18.95%.

    Conclusion 

    SSSLs of O. glumaepatula carry Cd-tolerant QTLs at the germination period, which will be useful for exploring beneficial Cd-tolerant genes in rice.

  • [1]
    陶战. 农业环境中的Cd[J]. 环境保护, 1978(6): 31-33.
    [2]
    何俊瑜, 任艳芳, 任明见, 等. 不同品种水稻种子萌发和幼苗生长的耐Cd性评价[J]. 中国农学通报, 2010, 26(9): 184-189.
    [3]
    孟桂元, 唐婷, 周静, 等. 不同水稻品种种子萌发及根芽生长的耐Cd性差异研究[J]. 杂交水稻, 2015, 30(5): 65-69.
    [4]
    孙亚莉, 刘红梅, 徐庆国. Cd胁迫对不同水稻品种种子萌发特性的影响[J]. 中国水稻科学, 2017, 31(4): 425-431.
    [5]
    江淼, 余海娟, 李亮, 等. 水稻核心种质的耐Cd性鉴定[J]. 植物生理学报, 2015, 51(10): 1617-1624.
    [6]
    ISHIKAWA S, ABE T, KURAMATA M, et al. A major quantitative trait locus for increasing cadmium-specific concentration in rice grain is located on the short arm of chromosome 7[J]. J Exp Bot, 2010, 61(3): 923-934. doi: 10.1093/jxb/erp360
    [7]
    HU D W, SHENG Z H, LI Q L, et al. Identification of QTLs associated with cadmium concentration in rice grains[J]. J Integr Agr, 2018, 17(7): 1563-1573. doi: 10.1016/S2095-3119(17)61847-1
    [8]
    程旺大, 姚海根, 张国平, 等. Cd胁迫对水稻生长和营养代谢的影响[J]. 中国农业科学, 农学通报, 2017, 33(17): 76-81.
    [9]
    DUAN G, SHAO G, TANG Z, et al. Genotypic and environmental variations in grain cadmium and arsenic concentrations among a panel of high yielding rice cultivars[J]. Rice, 2017, 10. doi: 10.1186/S12284-017-0149-2.
    [10]
    姚春馨, 隆四清, 和立忠, 等. 水稻镉积累基因型差异及其对镉胁迫的反应[J]. 湖南农业大学学报, 2007, 8(33): 37-41.
    [11]
    林晗, 徐江民, 胡珊倩, 等. 水稻耐金属离子胁迫的QTL分析[J]. 中国水稻科学, 2018, 32(1): 23-34.
    [12]
    ZHANG M, PINSON S R M, TARPLEY L, et al. Mapping and validation of quantitative trait loci associated with concentrations of 16 elements in unmilled rice grain[J]. Theor App Gene, 2014, 127(1): 137-165. doi: 10.1007/s00122-013-2207-5
    [13]
    LUO J, HUANG J, ZENG D, et al. A defensin-like protein drives cadmium efflux and allocation in rice[J]. Nat Commun, 2018, 9(1): 645-654. doi: 10.1038/s41467-018-03088-0
    [14]
    SUI F Q, ZHAO D K, ZHU H T, et al. Map-based cloning of a new total loss-of-function allele of OsHMA3 causes high cadmium accumulation in rice grain[J]. J Exp Bot, 2019, 70(10): 2857-2871. doi: 10.1093/jxb/erz093
    [15]
    林辉锋, 熊君, 林文熊. 水稻苗期耐Cd胁迫的QTL定位分析[J]. 中国农学通报, 2009, 25(9): 26-31.
    [16]
    XUE D, CHEN M, ZHANG G. Mapping of QTLs associated with cadmium tolerance and accumulation during seedling stage in rice (Oryza sativa L.)[J]. Euphytica, 2009, 165(3): 587-596. doi: 10.1007/s10681-008-9785-3
    [17]
    陈志德, 仲维功, 王军, 等. 水稻苗期耐Cd2+胁迫的QTL定位研究[J]. 南京农业大学学报, 2010, 33(3): 1-5.
    [18]
    李炜星, 欧阳林娟, 文文, 等. 水稻幼苗耐镉胁迫QTL的定位研究[J]. 江西农业大学学报, 2019, 41(1): 19-24.
    [19]
    ISHIKAWA S, AE N, YANO M. Chromosomal regions with quantitative trait loci controlling cadmium concentration in brown rice (Oryza sativa)[J]. New Phytol, 2005, 168(2): 345-350. doi: 10.1111/j.1469-8137.2005.01516.x
    [20]
    ABE T, NONOUE Y, ONO N, et al. Detection of QTLs to reduce cadmium content in rice grains using LAC23/Koshihikari chromosome segment substitution lines[J]. Breed Sci, 2013, 63(3): 284-291. doi: 10.1270/jsbbs.63.284
    [21]
    ZHAO J, YANG W, ZHANG S, et al. Genome-wide association study and candidate gene analysis of rice cadmium accumulation in grain in a diverse rice collection[J]. Rice, 2018, 11. doi: 10.1186/s12284-018-0254-x.
    [22]
    钟代彬, 罗利军, 应存山. 野生稻有利基因转移研究进展[J]. 中国水稻科学, 2000, 14(2): 103-106. doi: 10.3321/j.issn:1001-7216.2000.02.008
    [23]
    ZHAO H, SUN L, XIONG T, et al. Genetic characterization of the chromosome single-segment substitution lines of O. glumaepatula and O. barthii and identification of QTLs for yield-related traits[J]. Mol Breed, 2019, 39(4). doi: 10.1007/s11032-019-0960-0.
    [24]
    PATERSON A H, DeVERNA J W, LANINI B, et al. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato[J]. Genetics, 1990, 124(3): 735-742.
    [25]
    McCOUCH S R, CHO Y G, YANO M, et al. Report on QTL nomenclature[J]. Rice Genet Newsl, 1997, 14: 11-13.
    [26]
    ESHED Y, ZAMIR D. An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL[J]. Genetics, 1995, 141(3): 1147-1162.
    [27]
    SONG Y, WANG Y, MAO W, et al. Dietary cadmium exposure assessment among the Chinese population[J]. PLoS One, 2017, 12(5): e0177978. doi: 10.1371/journal.pone.0177978
    [28]
    NORDBERG G F. Historical perspectives on cadmium toxicology[J]. Toxicol Appl Pharmacol, 2009, 238(3): 192-200. doi: 10.1016/j.taap.2009.03.015
    [29]
    马孟莉, 卢丙越, 刘艳红, 等. 镉对云南省主栽水稻品种幼苗生长的影响[J]. 江苏农业科学, 2014, 42(3): 50-52.
    [30]
    陈毓瑾, 欧阳林娟, 朱红, 等. 常规水稻耐镉性及镉低积累种质的筛选[J]. 石河子大学学报(自然科学版), 2017, 35(6): 701-706.
  • Cited by

    Periodical cited type(1)

    1. 廖冰,黄秀艳,陈科,傅雪琳,何平. 野生稻单片段代换系苗期耐旱性评价及QTL鉴定. 广东农业科学. 2024(03): 70-80 .

    Other cited types(3)

Catalog

    Article views (741) PDF downloads (1051) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return