Citation: | ZHANG Menghao, WU Jialong, ZHANG Chi, et al. Influence of Eisenia fetida on aluminum fractions in latosolic red soil[J]. Journal of South China Agricultural University, 2020, 41(2): 48-54. DOI: 10.7671/j.issn.1001-411X.201905011 |
To investigate the impacts of earthworms on soil acidification characteristics and aluminum (Al) fractions of latosolic red soil in South China, and provide a theoretical basis for acidification improvement of latosolic red soil in South China.
The earthworms (Eisenia fetida) were incubated with latosolic red soil under laboratory conditions. After 40 days of incubation, Al fractions in earthworm cast and soil, namely exchangeable (AlEx), weakly organically bound (AlOrw), organically bound (AlOr), amorphous (AlAmo), Al occluded in crystalline iron oxides (AlOxi), and amorphous aluminosilicate and gibbsite (AlAag) fractions, were determined using sequential extraction methods. Earthworm cast and soil pH, organic carbon, total nitrogen, and cation exchange capacity (CEC) were determined. The principal component analyses were applied to study the distribution of different Al fractions in different treated soils. And the soil without earthworm was set as a control.
Compared to the control soil, pH of earthworm casts increased by 1.27, the total nitrogen, CEC, AlOr and exchangeable K, Na, and Ca contents increased by 62.16%, 38.22%, 355.70%, 151.38%, 65.38% and 51.90%, respectively, and AlEx contents in earthworm casts and soil decreased by 50.95% and 53.14% respectively. The pH, CEC, AlOr and exchangeable K, Na, Ca contents in casts were significantly higher than those in non-ingested soil.
Earthworms can significantly increase soil pH and AlOr, promote the release of exchangeable Ca2+ and Mg2+, and reduce soil AlEx content.
[1] |
GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008-1010. doi: 10.1126/science.1182570
|
[2] |
QIAO X, XIAO W, JAFFE D, et al. Atmospheric wet deposition of sulfur and nitrogen in Jiuzhaigou National Nature Reserve, Sichuan Province, China[J]. Sci Total Environ, 2015, 511: 28-36. doi: 10.1016/j.scitotenv.2014.12.028
|
[3] |
ZHAO Y, DUAN L, XING J, et al. Soil acidification in China: Is controlling SO2 emissions enough?[J]. Environ Scie Technol, 2009, 43(21): 8021-8026. doi: 10.1021/es901430n
|
[4] |
沈仁芳. 铝在土壤−植物中的行为及植物的适应机制[M]. 北京: 科学出版社, 2008: 1-22.
|
[5] |
ZHANG J E, YU J Y, OUYANG Y. Responses of earthworm to aluminum toxicity in latosol[J]. Environ Sci Pollut Res, 2013, 20(2): 1135-1141. doi: 10.1007/s11356-012-0969-y
|
[6] |
KUBOVÁ J, MATÚŠ P, BUJDOŠ M, et al. Influence of acid mining activity on release of aluminium to the environment[J]. Anal Chim Acta, 2005, 547(1): 119-125. doi: 10.1016/j.aca.2004.12.014
|
[7] |
JANEZ Š, RADMILA M. Aluminium speciation in environmental samples: A review[J]. Anal Bioanal Chem, 2006, 386(4): 999-1012. doi: 10.1007/s00216-006-0422-5
|
[8] |
徐仁扣. 酸化红壤的修复原理与技术[M]. 北京: 科学出版社, 2012: 1-4.
|
[9] |
陈怀满. 土壤中化学物质的行为与环境质量[M]. 北京: 科学出版社, 2002: 194-204.
|
[10] |
BAQUY M A, LI J Y, JIANG J, et al. Critical pH and exchangeable Al of four acidic soils derived from different parent materials for maize crops[J]. J Soil Sed, 2018, 18(4): 1490-1499.
|
[11] |
LARSSEN T, VOGT R D, SEIP H M, et al. Mechanisms for aluminum release in Chinese acid forest soils[J]. Geoderma, 1999, 91(1/2): 65-86.
|
[12] |
HAGVALL K, PERSSON P, KARLSSON T. Speciation of aluminum in soils and stream waters: The importance of organic matter[J]. Chem Geol, 2015, 417: 32-43. doi: 10.1016/j.chemgeo.2015.09.012
|
[13] |
EVANS A, JACOBS M B. Aluminum activity in alpine tundra soil, Rocky Mountain National Park, Colorado, U.S.A[J]. Soil Sci, 2016, 181(8): 359-367. doi: 10.1097/SS.0000000000000172
|
[14] |
BLOUIN M, HODSON M E, DELGADO E A, et al. A review of earthworm impact on soil function and ecosystem services[J]. Eur J Soil Sci, 2013, 64(2): 161-182. doi: 10.1111/ejss.12025
|
[15] |
LAVELLE P, SPAIN A V. Soil ecology[M]. London: Kluwer Academic Publisher, 2001: 285-291.
|
[16] |
RICHARDSON J B, BLOSSEY B, DOBSON A M. Earthworm impacts on trace metal (Al, Fe, Mo, Cu, Zn, Pb) exchangeability and uptake by young Acer saccharum and Polystichum acrostichoides[J]. Biogeochemistry, 2018, 138: 103-119. doi: 10.1007/s10533-018-0434-1
|
[17] |
ZHANG C, MORA P, DAI J, et al. Earthworm and organic amendment effects on microbial activities and metal availability in a contaminated soil from China[J]. Appl Soil Ecol, 2016, 104: 54-66. doi: 10.1016/j.apsoil.2016.03.006
|
[18] |
TICA D, UDOVIC M, LESTAN D. Long-term efficiency of soil stabilization with apatite and Slovakite: The impact of two earthworm species (Lumbricus terrestris and Dendrobaena veneta) on lead bioaccessibility and soil functioning[J]. Chemosphere, 2013, 91(1): 1-6. doi: 10.1016/j.chemosphere.2012.11.011
|
[19] |
SIZMUR T, PALUMBOROE B, HODSON M E. Impact of earthworms on trace element solubility in contaminated mine soils amended with green waste compost[J]. Environ Pollut, 2011, 159(7): 1852-1860. doi: 10.1016/j.envpol.2011.03.024
|
[20] |
ZHANG C, LANGLEST R, VELASQUEZ E, et al. Cast production and NIR spectral signatures of Aporrectodea caliginosa fed soil with different amounts of half-decomposed Populus nigra litter[J]. Biol Fertil Soil, 2009, 45(8): 839-844. doi: 10.1007/s00374-009-0395-6
|
[21] |
NAHMANI J, HODSON M E, BLACK S. Effects of metals on life cycle parameters of the earthworm Eisenia fetida exposed to field-contaminated, metal-polluted soils[J]. Environ Pollut, 2007, 149(1): 44-58. doi: 10.1016/j.envpol.2006.12.018
|
[22] |
SHI Z, TANG Z, WANG C. A brief review and evaluation of earthworm biomarkers in soil pollution assessment[J]. Environ Sci Pollut Res, 2017, 24(15): 13284-13294. doi: 10.1007/s11356-017-8784-0
|
[23] |
吕焕哲, 王凯荣, 谢小立, 等. 有机物料对酸性红壤铝毒的缓解效应[J]. 植物营养与肥料学报, 2007(4): 637-641. doi: 10.3321/j.issn:1008-505X.2007.04.016
|
[24] |
ZHANG B G, LI G T, SHEN T S, et al. Changes in microbial biomass C, N, and P and enzyme activities in soil incubated with the earthworms Metaphire guillelmi or Eisenia fetida[J]. Soil Biol Biochem, 2000, 32(14): 2055-2062. doi: 10.1016/S0038-0717(00)00111-5
|
[25] |
MORO H, KUNITO T, SAITO T, et al. Soil microorganisms are less susceptible than crop plants to potassium deficiency[J]. Arch Agron Soil Sci, 2014, 60(12): 1807-1813. doi: 10.1080/03650340.2014.918960
|
[26] |
邵宗臣, 何群, 王维君. 红壤中铝的形态[J]. 土壤学报, 1998, 35(1): 38-48. doi: 10.3321/j.issn:0564-3929.1998.01.006
|
[27] |
UDOVIC M, LESTAN D. The effect of earthworms on the fractionation and bioavailability of heavy metals before and after soil remediation[J]. Environ Pollut, 2007, 148(2): 663-668. doi: 10.1016/j.envpol.2006.11.010
|
[28] |
THIOULOUSE J, CHESSEL D, SYLVAIN DOLÉDEC, et al. ADE-4: A multivariate analysis and graphical display software[J]. Statist Comput, 1997, 7(1): 75-83. doi: 10.1023/A:1018513530268
|
[29] |
WEN B, LIU Y, HU X Y, et al. Effect of earthworms (Eisenia fetida) on the fractionation and bioavailability of rare earth elements in nine Chinese soils[J]. Chemosphere, 2006, 63(7): 1179-1186. doi: 10.1016/j.chemosphere.2005.09.002
|
[30] |
YU X, CHENG J, WONG M H. Earthworm-mycorrhiza interaction on Cd uptake and growth of ryegrass[J]. Soil Biol Biochem, 2005, 37(2): 195-201. doi: 10.1016/j.soilbio.2004.07.029
|
[31] |
张池, 周波, 吴家龙, 等. 蚯蚓在我国南方土壤修复中的应用[J]. 生物多样性, 2018, 26(10): 65-76.
|
[32] |
陈欢, 王斌, 李根, 等. 不同生活型蚯蚓蚓粪化学组成及其性状的研究[J]. 土壤, 2013, 45(2): 313-318. doi: 10.3969/j.issn.0253-9829.2013.02.020
|
[33] |
王斌, 李根, 陈欢, 等. 蚯蚓作用下土壤化学组成和性状的动态变化[J]. 水土保持学报, 2013, 27(3): 273-277.
|
[34] |
GARCÍA-MONTERO L G, GRANDE-ORTÍZ M A, MENTA C, et al. Impact of earthworm casts on soil pH and calcium carbonate in black truffle burns[J]. Agroforest System, 2013, 87(4): 815-826. doi: 10.1007/s10457-013-9598-9
|
[35] |
KARACA A. Biology of earthworms[M]. London: Chapman & Hall, 2011: 51-67.
|
[36] |
LEE K E. Earthworms: Their ecology and relationships with soils and land use[M]. Sydney: Academic Press, 1985.
|
[37] |
BAILEY S W, HORSLEY S B, LONG R P. Thirty years of change in forest soils of the allegheny plateau, Pennsylvania[J]. Soil Sci Soc Am J, 2005, 69(3): 681-690. doi: 10.2136/sssaj2004.0057
|
[38] |
KUNITO T, ISOMURA I, SUMI H, et al. Aluminum and acidity suppress microbial activity and biomass in acidic forest soils[J]. Soil Biol Biochem, 2016, 97: 23-30. doi: 10.1016/j.soilbio.2016.02.019
|
[39] |
PARKER D R, ZELAZNY L W, KINRAIDE T B. On the phytotoxicity of polynuclear hydroxy-aluminum complexes[J]. Soil Sci Soc Am J, 1989, 53(3): 789-796. doi: 10.2136/sssaj1989.03615995005300030027x
|
[40] |
殷佳丽. 茶园土壤团聚体氟、铝形态分布及其与土壤化学性质的关系[D]. 成都: 四川农业大学, 2016.
|
[41] |
秦樊鑫, 魏朝富, 黄先飞, 等. 黔西北茶园土壤活性铝的形态分布及影响因素[J]. 环境科学研究, 2015, 28(6): 943-950.
|
[42] |
LI J, XU R, TIWARI D, et al. Mechanism of aluminum release from variable charge soils induced by low-molecular-weight organic acids: Kinetic study[J]. Geochim Et Cosmochim Acta, 2006, 70(11): 2755-2764. doi: 10.1016/j.gca.2006.03.017
|
[43] |
WANG A Q, LIN K, MA C X, et al. A brief study on pH, exchangeable Ca2+ and Mg2+ in farmlands under tobacco-rice rotation in Xuancheng City of South Anhui[J]. Agric Sci, 2018, 9: 480-488.
|
[44] |
HUANG J, ZHANG W, LIU M, et al. Different impacts of native and exotic earthworms on rhizodeposit carbon sequestration in a subtropical soil[J]. Soil Biol Biochem, 2015, 90: 152-160. doi: 10.1016/j.soilbio.2015.08.011
|
[45] |
BRIONES I, JESUS M, OSTLE N J, et al. Stable isotopes reveal that the calciferous gland of earthworms is a CO2-fixing organ[J]. Soil Biol Biochem, 2008, 40(2): 554-557. doi: 10.1016/j.soilbio.2007.09.012
|