Citation: | LU Tingting, ZOU Xian, YANG Zhenwei, et al. Transcriptome analysis of goat ovaries and follicles based on high-throughput sequencing[J]. Journal of South China Agricultural University, 2020, 41(2): 23-32. DOI: 10.7671/j.issn.1001-411X.201905006 |
To compare the expression profiles of mRNA among ovarian stroma, large follicles and small follicles of goat (Capra hircus), and lay a foundation for exploring the mechanism of follicular development.
High-throughput sequencing technology was used to sequence the transcriptome of ovarian stroma, large follicles and small follicles in Chuanzhong black goats during estrus. The expression profiles of mRNA were detected by bioinformatics, and the differentially expressed genes were screened out. The GO and KEGG pathways of differentially expressed genes were analyzed. Finally, five differentially expressed genes were randomly selected and were verified by fluorescence quantitative PCR.
The differentially expressed genes of ovarian stroma vs large follicles, ovarian stroma vs small follicles and small follicles vs large follicles were 524, 180 and 403, respectively. Fifteen genes related to follicular development, such as INHA and TNFRSF19, were screened. They were mainly involved in endoplasmic reticulum protein processing, steroid biosynthesis, oocyte meiosis signaling pathway and so on. Quantitative results were basically consistent with sequencing results verified by qRT-PCR.
The gene expression profiles of ovarian stroma, large follicles and small follicles in Chuanzhong black goats are different, and the gene expression patterns of small follicles and ovarian stroma are relative more similar.
[1] |
CUI H X, ZHAO S M, CHENG M L, et al. Cloning and expression levels of genes relating to the ovulation rate of the Yunling black goat[J]. Biol Reprod, 2009, 80(2): 219-226. doi: 10.1095/biolreprod.108.069021
|
[2] |
WANG X, ZOU P, HE Y, et al. Effect of luteinizing hormone on goat theca cell apoptosis and steroidogenesis through activation of the PI3K/AKT pathway[J]. Anim Reprod Sci, 2018, 190: 108-118. doi: 10.1016/j.anireprosci.2018.01.014
|
[3] |
YANG D, JIANG T, LIN P, et al. Knock-down of apoptosis inducing factor gene protects endoplasmic reticulum stress-mediated goat granulosa cell apoptosis[J]. Theriogenology, 2017, 88: 89-97. doi: 10.1016/j.theriogenology.2016.10.001
|
[4] |
ZI XD, LU J Y, ZHOU H, et al. Comparative analysis of ovarian transcriptomes between prolific and non-prolific goat breeds via high-throughput sequencing[J]. Reprod Domest Anim, 2018, 53(2): 344-351. doi: 10.1111/rda.13111
|
[5] |
LING YH, REN C H, GUO X F, et al. Identification and characterization of microRNAs in the ovaries of multiple and uniparous goats (Capra hircus) during follicular phase[J]. BMC Genomics, 2014, 15: 339. doi: 10.1186/1471-2164-15-339
|
[6] |
TERENINA E, FABRE S, BONNET A, et al. Differentially expressed genes and gene networks involved in pig ovarian follicular atresia[J]. Physiol Genomics, 2017, 49(2): 67-80. doi: 10.1152/physiolgenomics.00069.2016
|
[7] |
ZHANG J, LIU Y, YAO W, et al. Initiation of follicular atresia: Gene networks during early atresia in pig ovaries[J]. Reproduction, 2018, 156(1): 23-33. doi: 10.1530/REP-18-0058
|
[8] |
李鹏飞, 孟金柱, 景炅婕, 等. 转录组测序筛选牛卵泡发育相关基因及其表达差异分析[J]. 中国农业科学, 2018, 51(15): 187-195.
|
[9] |
李鹏飞, 孟金柱, 谢建山, 等. PDF2和ODF1转录组测序筛选牛卵泡发育相关基因[J]. 畜牧兽医学报, 2018, 49(2): 300-309.
|
[10] |
HATZIRODOS N, IRVING-RODGERS H F, HUMMITZSCH K, et al. Transcriptome profiling of granulosa cells of bovine ovarian follicles during growth from small to large antral sizes[J]. BMC Genomics, 2014, 15: 24. doi: 10.1186/1471-2164-15-24
|
[11] |
吴阳升, 林嘉鹏, 汪立芹, 等. 绵羊小卵泡与中卵泡转录组差异特征分析[J]. 江苏农业学报, 2016, 32(4): 832-842. doi: 10.3969/j.issn.1000-4440.2016.04.019
|
[12] |
江昱, 王杰, 金鑫燕. 不同四川黑山羊品种mtDNAD-loop区遗传多样性分析[J]. 安徽农业科学, 2010, 38(27): 15052-15054. doi: 10.3969/j.issn.0517-6611.2010.27.089
|
[13] |
杨新月, 周多恩, 李斌, 等. 湖羊和川中黑山羊GDF9、BMPR-IB、GnRHR基因多态性及其与产羔数的关联分析[J]. 黑龙江畜牧兽医, 2018(15): 106-110.
|
[14] |
王丽华. DBP降解菌DNB-S1转录组学研究及功能基因的筛选[D]. 哈尔滨: 东北农业大学, 2016.
|
[15] |
邓素芳. 基于RNA-Seq的野生蕉(Musa itinerans)果皮颜色差异形成的分析机制研究[D]. 福州: 福建农林大学, 2018.
|
[16] |
尹修远, 王建, 李拥军, 等. 同期发情技术在绵羊生产上的应用[J]. 当代畜牧, 2018(30): 18-20.
|
[17] |
谭晓山, 王燕, 皇甫江云, 等. 山羊发情控制技术[J]. 贵州畜牧兽医, 2017, 41(6): 27-29. doi: 10.3969/j.issn.1007-1474.2017.06.009
|
[18] |
吕永锋, 任茂源, 郭彬彬, 等. 舍饲陇东绒山羊同期发情及繁殖性状的研究[J]. 中国草食动物科学, 2018, 38(6): 71-72. doi: 10.3969/j.issn.2095-3887.2018.06.022
|
[19] |
王珂, 于轩, 任茂源, 等. 不同受体羊同期发情及胚胎移植效果的研究[J]. 畜牧兽医杂志, 2018, 37(6): 1-3. doi: 10.3969/j.issn.1004-6704.2018.06.001
|
[20] |
LI W, LI C, CHEN S, et al. Effect of inhibin A on proliferation of porcine granulosa cells in vitro[J]. Theriogenology, 2018, 114: 136-142. doi: 10.1016/j.theriogenology.2018.03.034
|
[21] |
HATZIRODOS N, HUMMITZSCH K, IRVING-RODGERS H F, et al. Transcriptome profiling of granulosa cells from bovine ovarian follicles during atresia[J]. BMC Genomics, 2014, 15: 40. doi: 10.1186/1471-2164-15-40
|
[22] |
CHOI H, RYU K Y, ROH J. Kruppel-like factor 4 plays a role in the luteal transition in steroidogenesis by downregulating Cyp19A1 expression[J]. Am J Physiol Endocrinol Metab, 2019, 316(6): E1071-E1080. doi: 10.1152/ajpendo.00238.2018
|
[23] |
ROSEWELL K L, AL-ALEM L, ZAKERKISH F, et al. Induction of proteinases in the human preovulatory follicle of the menstrual cycle by human chorionic gonadotropin[J]. Fertil Steril, 2015, 103(3): 826-833. doi: 10.1016/j.fertnstert.2014.11.017
|
[24] |
OGIWARA K, TAKAHASHI T. Nuclear progestin receptor phosphorylation by Cdk9 is required for the expression of Mmp15, a protease indispensable for ovulation in medaka[J]. Cells, 2019, 8: 215. doi: 10.3390/cells8030215.
|
[25] |
MAZZONI G, SALLEH S M, FREUDE K, et al. Identification of potential biomarkers in donor cows for in vitro embryo production by granulosa cell transcriptomics[J]. PLoS One, 2017, 12(4): e0175464. doi: 10.1371/journal.pone.0175464
|
[26] |
DIAO H, XIAO S, LI R, et al. Distinct spatiotemporal expression of serine proteases Prss23 and Prss35 in periimplantation mouse uterus and dispensable function of Prss35 in fertility[J]. PLoS One, 2013, 8(2): e56757. doi: 10.1371/journal.pone.0056757
|
[27] |
HATZIRODOS N, HUMMITZSCH K, IRVING-RODGERS H F, et al. Transcriptome comparisons identify new cell markers for theca interna and granulosa cells from small and large antral ovarian follicles[J]. PLoS One, 2015, 10(3): e0119800. doi: 10.1371/journal.pone.0119800
|
[28] |
KIM K, BLOOM M S, FUJIMOTO V Y, et al. Variability in follicular fluid high density lipoprotein particle components measured in ipsilateral follicles[J]. J Assist Reprod Genet, 2016, 33(3): 423-430. doi: 10.1007/s10815-016-0648-x
|
[29] |
SRIRAMAN V, SINHA M, RICHARDS J S. Progesterone receptor-induced gene expression in primary mouse granulosa cell cultures[J]. Biol Reprod, 2010, 82(2): 402-412. doi: 10.1095/biolreprod.109.077610
|
[30] |
SAMIR M, GLISTER C, MATTAR D, et al. Follicular expression of pro-inflammatory cytokines tumour necrosis factor-alpha (TNFalpha), interleukin 6(IL6) and their receptors in cattle: TNFalpha, IL6 and macrophages suppress thecal androgen production in vitro[J]. Reproduction, 2017, 154(1): 35-49. doi: 10.1530/REP-17-0053
|
[31] |
MIAO X, LUO Q, ZHAO H, et al. Ovarian transcriptomic study reveals the differential regulation of miRNAs and lncRNAs related to fecundity in different sheep[J]. Sci Rep, 2016, 6: 35299. doi: 10.1038/srep35299
|
[32] |
ZHENG Z G, XU H, SUO S S, et al. The essential role of H19 contributing to cisplatin resistance by regulating glutathione metabolism in high-grade serous ovarian cancer[J]. Sci Rep, 2016, 6: 26093. doi: 10.1038/srep26093
|
[33] |
OJIMA F, SAITO Y, TSUCHIYA Y, et al. Runx3 regulates folliculogenesis and steroidogenesis in granulosa cells of immature mice[J]. Cell Tissue Res, 2019, 375(3): 743-754. doi: 10.1007/s00441-018-2947-2
|
[34] |
YAN Q, ZHENG D M, YU J S, et al. Comprehensive analysis of miRNA-mRNA-lncRNA networks in non-smoking and smoking patients with chronic obstructive pulmonary disease[J]. Cell Physiol Biochem, 2018, 50: 1140-1153. doi: 10.1159/000494541
|
[35] |
XIE L, YAO Z H, ZHANG Y, et al. Deep RNA sequencing reveals the dynamic regulation of miRNA, lncRNAs, and mRNAs in osteosarcoma tumorigenesis and pulmonary metastasis[J]. Cell Death Dis, 2018, 9: 772. doi: 10.1038/s41419-018-0813-5
|
[36] |
何冬倩. 山羊卵巢颗粒细胞中chi-miR-130b-5p的靶向基因研究[D]. 重庆: 西南大学, 2018.
|
[37] |
曹婧. Aurora B及其SUMO修饰对小鼠卵泡发育和颗粒细胞生长的影响及调控机制研究[D]. 武汉: 华中农业大学, 2017.
|
[38] |
程国虎. CDC25C基因在成年山羊与幼年_省略_羊卵巢颗粒细胞中的表达及功能验证[D]. 扬州: 扬州大学, 2017.
|
[39] |
BONNET A, LE CAO K A, SANCRISTOBAL M, et al. In vivo gene expression in granulosa cells during pig terminal follicular development[J]. Reproduction, 2008, 136(2): 211-224. doi: 10.1530/REP-07-0312
|
[40] |
NADERI A, LIU J, BENNETT I C. BEX2 regulates mitochondrial apoptosis and G1 cell cycle in breast cancer[J]. Int J Cancer, 2010, 126(7): 1596-1610.
|
[41] |
韩秋悦, 范颜会, 王雅丽, 等. BEX2与INI1/hSNF5蛋白的相互作用及其在细胞周期中的功能鉴定[J]. 遗传, 2012, 34(6): 711-718.
|
[42] |
KHAN D R, FOURNIER E, DUFORT I, et al. Meta-analysis of gene expression profiles in granulosa cells during folliculogenesis[J]. Reproduction, 2016, 151(6): R103-R110. doi: 10.1530/REP-15-0594
|
[43] |
CLAESKENS A. ONGENAE N, NEEFS J M, et al. Hevin is down-regulated in many cancers and is a negative regulator of cell growth and proliferation[J]. Br J Cancer, 2000, 82(6): 1123-1130. doi: 10.1054/bjoc.1999.1051
|
[44] |
陈立兰. 三羧酸循环酶CS和SDHB对卵巢癌生物学行为和mtDNA的作用研究[D]. 上海: 上海交通大学, 2015.
|
[45] |
MESTWERDT W. Follicular granulosa cells in relationship to steroid biosynthesis in the periovulation phase[J]. Fortschr Med, 1977, 95(6): 361-365.
|
[46] |
STOCCO D M, ZHAO A H, TU L N, et al. A brief history of the search for the protein(s) involved in the acute regulation of steroidogenesis[J]. Mol Cell Endocrinol, 2017, 441: 7-16. doi: 10.1016/j.mce.2016.07.036
|
[47] |
毛宁. 香猪类固醇激素合成关键基因差异表达的分子机制研究[D]. 贵阳: 贵州大学, 2018.
|
[48] |
苗艳平. 刘若男, 魏彦辉, 等. 绵羊卵巢oar-mir-150靶向调节类固醇激素合成急性调节蛋白基因的表达[J]. 农业生物技术学报, 2018, 26(2): 234-245.
|
[49] |
周成杰. Centromere protein F在小鼠卵母细胞减数分裂及早期胚胎发育过程中的功能研究[D]. 呼和浩特: 内蒙古大学, 2017.
|
[50] |
文佳. GSK-3β调控小鼠卵母细胞第一次减数分裂与原始卵泡形成机制的研究[D]. 北京: 中国农业大学, 2018.
|
[51] |
曹俊国, 陈敏, 李文, 等. 哺乳动物卵泡发育调控分子机制研究进展[J]. 特产研究, 2018, 40(4): 114-118.
|
[52] |
袁晓华, 张莉莉, 盛喜霞, 等. PGRMC1介导孕酮抑制卵泡发育的作用及机制研究[J]. 海南医学, 2019, 30(1): 1-5. doi: 10.3969/j.issn.1003-6350.2019.01.001
|
[53] |
LODDE V, PELUSO J J. A novel role for progesterone and progesterone receptor membrane component 1 in regulating spindle microtubule stability during rat and human ovarian cell mitosis[J]. Biol Reprod, 2011, 84(4): 715-722. doi: 10.1095/biolreprod.110.088385
|
[54] |
JING J, JIANG X, CHEN J, et al. Notch signaling pathway promotes the development of ovine ovarian follicular granulosa cells[J]. Anim Reprod Sci, 2017, 181: 69-78. doi: 10.1016/j.anireprosci.2017.03.017
|