YU Ming, CAI Jinhuan, XUE Li. Effects of nitrogen and phosphorus additions on carbon storage and allocation of Cinnamomum camphora seedlings under different planting densities[J]. Journal of South China Agricultural University, 2020, 41(1): 116-123. DOI: 10.7671/j.issn.1001-411X.201904025
    Citation: YU Ming, CAI Jinhuan, XUE Li. Effects of nitrogen and phosphorus additions on carbon storage and allocation of Cinnamomum camphora seedlings under different planting densities[J]. Journal of South China Agricultural University, 2020, 41(1): 116-123. DOI: 10.7671/j.issn.1001-411X.201904025

    Effects of nitrogen and phosphorus additions on carbon storage and allocation of Cinnamomum camphora seedlings under different planting densities

    More Information
    • Received Date: April 12, 2019
    • Available Online: May 17, 2023
    • Objective 

      To study carbon (C) content, storage and allocation in seedling organs of Cinnamomum camphora cultivated in four different densities under nitrogen (N) and phosphorus (P) additions, and provide information for forest C storage and allocation under the background of N deposition and P addition.

      Method 

      The 1-year-old C. camphora seedlings were used as test materials. NH4Cl and NaH2PO4·2H2O were selected to simulate atmospheric N deposition and P addition, respectively. N and P additions were performed with four different levels (control, N, P, and N+P). The N and P addition amounts per year in N, P, and N+P treatments were 40 g·m−2 NH4Cl, 20 g·m−2 NaH2PO4·2H2O and 40 g·m−2 NH4Cl + 20 g·m−2 NaH2PO4·2H2O, respectively. Seedlings were planted in four different densities (10, 20, 40 and 80 seedlings·m−2).

      Result 

      C contents in roots, stems and branches of seedlings in all treatments had no significant difference. N and N+P treatments increased C content of leaves. With the increase of planting density, C content of leaves tended to decrease. The N and P additions increased C storage per seedling and C storage in unit area. C storage per seedling decreased with the increase of planting density.

      Conclusion 

      C storage of leaves per seedling and C storage in unit area decreases with the increase of planting density. C storage percentage of stems increases in high cultivation density treatment. The effect of N+P treatment on C storage per seedling and C storage in unit area is greater than that of single N or P addition.

    • [1]
      辛小娟, 王刚, 杨莹博, 等. 氮、磷添加对亚高山草甸地上/地下生物量分配的影响[J]. 生态科学, 2014, 33(3): 452-458.
      [2]
      陈瑶, 王法明, 莫其锋, 等. 氮磷添加对华南热带森林尾叶桉木质残体分解和养分动态的影响[J]. 应用与环境生物学报, 2015, 21(4): 747-753.
      [3]
      CHEN H, ZHANG W, GILLIAM F, et al. Changes in soil carbon sequestration in Pinus massoniana forests along an urban-to-rural gradient of southern China[J]. Biogeosciences, 2013, 10(10): 6609-6616. doi: 10.5194/bg-10-6609-2013
      [4]
      刘顺, 罗达, 刘千里, 等. 川西亚高山不同森林生态系统碳氮储量及其分配格局[J]. 生态学报, 2017, 37(4): 1074-1083.
      [5]
      LUO Y, ZHANG X, WANG X, et al. Dissecting variation in biomass conversion factors across China’s forests: Implications for biomass and carbon accounting[J]. PLoS One, 2014, 9(4): e94777. doi: 10.1371/journal.pone.0094777
      [6]
      LIE Z Y, XUE L, JACOBS D F. Allocation of forest biomass across broad precipitation gradients in China’ s forests[J]. Sci Rep, 2018, 8: 10536. doi: 10.1038/s41598-018-28899-5
      [7]
      YAN G Y, XING Y J, WANG J Y, et al. Sequestration of atmospheric CO2 in boreal forest carbon pools in Northeastern China: Effects of nitrogen deposition[J]. Agric Forest Meteorol, 2018, 248: 70-81. doi: 10.1016/j.agrformet.2017.09.015
      [8]
      SPARRIUS L B, SEVINK J, KOOIJMAN A M. Effects of nitrogen deposition on soil and vegetation in primary succession stages in inland drift sands[J]. Plant Soil, 2012, 353(1/2): 261-272.
      [9]
      GAO Y, HAO Z, YANG T T, et al. Effects of atmospheric reactive phosphorus deposition on phosphorus transport in a subtropical watershed: A Chinese case study[J]. Environ Pollut, 2017, 226: 69-78. doi: 10.1016/j.envpol.2017.03.067
      [10]
      王鑫瑶, 王旭, 朱美玲, 等. 海南主要森林类型植被碳贮量与固碳价值评价[J]. 中南林业科技大学学报, 2017, 37(7): 92-98.
      [11]
      明安刚, 刘世荣, 莫慧华, 等. 南亚热带红锥、杉木纯林与混交林碳贮量比较[J]. 生态学报, 2016, 36(1): 244-251.
      [12]
      郭剑芬, 杨玉盛, 陈光水, 等. 火烧对森林土壤有机碳的影响研究进展[J]. 生态学报, 2015, 35(9): 2800-2809.
      [13]
      DEZI S, MEDLYN B E, TONON G, et al. The effect of nitrogen deposition on forest carbon sequestration: a model-based analysis[J]. Global Change Biol, 2010, 16(5): 1470-1486. doi: 10.1111/j.1365-2486.2009.02102.x
      [14]
      ZAEHLE S, CIAIS P, FRIEND A D, et al. Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions[J]. Nat Geosci, 2011(9): 601-605.
      [15]
      朱仕明, 肖玲玲, 薛立, 等. 密度对乐昌含笑幼苗的生长和生物量的影响[J]. 中南林业科技大学学报, 2015, 35(8): 77-80.
      [16]
      肖玲玲, 朱仕明, 胡继文, 等. 不同密度条件下樟树幼苗生长和幼苗重量分配格局[J]. 安徽农业大学学报, 2015, 42(3): 353-356.
      [17]
      董喜光, 张越, 薛立, 等. 不同密度的山杜英幼苗生长分析[J]. 生态科学, 2016, 35(4): 86-90.
      [18]
      伍艳芳, 肖复明, 徐海宁, 等. 樟树全基因组调查[J]. 植物遗传资源学报, 2014, 15(1): 149-152.
      [19]
      张赐成, 韩广, 关华德, 等. 樟树和桂花树光合最适温度对环境温度改变的响应[J]. 生态学杂志, 2014, 33(11): 2980-2987.
      [20]
      王卓敏, 郑欣颖, 薛立. 樟树幼苗对干旱胁迫和种植密度的生理响应[J]. 生态学杂志, 2017, 36(6): 1495-1502.
      [21]
      文丽, 雷丕锋, 戴凌. 不同林龄樟树林土壤碳氮贮量及分布特征[J]. 中南林业科技大学学报, 2014, 34(6): 106-111. doi: 10.3969/j.issn.1673-923X.2014.06.021
      [22]
      文汲, 闫文德, 刘益君, 等. 施氮对亚热带樟树人工林土壤氮矿化的影响[J]. 中南林业科技大学学报, 2015, 35(5): 103-108.
      [23]
      赵晶, 闫文德, 郑威, 等. 樟树人工林凋落物养分含量及归还量对氮沉降的响应[J]. 生态学报, 2016, 36(2): 350-359.
      [24]
      AERTS R, VANLOGTESTIJN R, KARLSSON P S. Nitrogen supply differentially affects litter decomposition rates and nitrogen dynamics of sub-arctic bog species[J]. Oecologia, 2006, 146(4): 652-658. doi: 10.1007/s00442-005-0247-5
      [25]
      佘汉基, 郑欣颖, 薛立, 等. 外源性氮和磷对尾叶桉凋落叶分解的影响[J]. 安徽农业大学学报, 2017, 44(3): 409-414.
      [26]
      鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000: 30-106.
      [27]
      陈莉, 宋敏, 宋同清, 等. 广西不同林龄软阔林碳储量及其分配格局[J]. 生态学杂志, 2017, 36(3): 592-600.
      [28]
      CURREY P M, JOHNSON D, DAWSON L A, et al. Five years of simulated atmospheric nitrogen deposition have only subtle effects on the fate of newly synthesized carbon in Calluna vulgaris and Eriophorum vaginatum[J]. Soil Biol Biochem, 2011, 43(3): 495-502. doi: 10.1016/j.soilbio.2010.11.003
      [29]
      张慧, 郭卫红, 杨秀清, 等. 麻栎种源林叶片碳、氮、磷化学计量特征的变异[J]. 应用生态学报, 2016, 27(7): 2225-2230.
      [30]
      翁俊, 顾鸿昊, 王志坤, 等. 氮沉降对毛竹叶片生态化学计量特征的影响[J]. 生态科学, 2015, 34(2): 63-70.
      [31]
      蒋思思, 魏丽萍, 杨松, 等. 不同种源油松幼苗的光合色素和非结构性碳水化合物对模拟氮沉降的短期响应[J]. 生态学报, 2015, 35(21): 7061-7070.
      [32]
      吴家兵, 井艳丽, 关德新, 等. 氮沉降对森林碳汇功能影响的研究进展[J]. 世界林业研究, 2012, 25(2): 12-16.
      [33]
      HOFMOCKEL K S. Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2[J]. Ecol Lett, 2011, 14(4): 349-57. doi: 10.1111/j.1461-0248.2011.01593.x
      [34]
      黎磊, 周道玮, 盛连喜. 密度制约决定的植物生物量分配格局[J]. 生态学杂志, 2011, 30(8): 1579-1589.
      [35]
      沈杰, 蔡艳, 何玉亭, 等. 种植密度对烤烟养分吸收及品质形成的影响[J]. 西北农林科技大学学报(自然科学版), 2016, 44(10): 51-58.
      [36]
      LU X K, MO J M, GILLIAM F S, et al. Nitrogen addition shapes soil phosphorus availability in two reforested tropical forests in southern China[J]. Biotropica, 2012, 44(3): 302-311. doi: 10.1111/j.1744-7429.2011.00831.x
      [37]
      苗惠田, 吕家珑, 张文菊, 等. 潮土小麦碳氮含量对长期不同施肥模式的响应[J]. 植物营养与肥料学报, 2015, 21(1): 72-80. doi: 10.11674/zwyf.2015.0108
      [38]
      ELSER J J, BRACKEN M E S, CLELAND E E, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems[J]. Ecol Lett, 2007, 10(12): 1135. doi: 10.1111/j.1461-0248.2007.01113.x
      [39]
      何利元, 胡中民, 郭群, 等. 氮磷添加对内蒙古温带草地地上生物量的影响[J]. 应用生态学报, 2015, 26(8): 2291-2297.
      [40]
      黄钰辉, 张卫强, 甘先华, 等. 南亚热带杉木林改造不同树种配置模式的土壤质量评价[J]. 中国水土保持科学, 2017, 15(3): 123-130.
      [41]
      樊后保, 刘文飞, 李燕燕, 等. 杉木(Cunninghamia lanceolata)人工林生长与土壤养分对氮沉降的响应[J]. 生态学报, 2007, 27(11): 4630-4642. doi: 10.3321/j.issn:1000-0933.2007.11.031
      [42]
      詹书侠, 陈伏生, 胡小飞, 等. 中亚热带丘陵红壤区森林演替典型阶段土壤氮磷有效性[J]. 生态学报, 2009, 29(9): 4673-4680. doi: 10.3321/j.issn:1000-0933.2009.09.010
      [43]
      苏波, 韩兴国, 渠春梅, 等. 森林土壤氮素可利用性的影响因素研究综述[J]. 生态学杂志, 2002, 21(2): 40-46. doi: 10.3321/j.issn:1000-4890.2002.02.011
      [44]
      XIA J Y, WAN S Q. Global response patterns of terrestrial plant species to nitrogen addition[J]. New Phytolog, 2008, 179(2): 428-439. doi: 10.1111/j.1469-8137.2008.02488.x
      [45]
      REICH P B, LUO Y, BRADFORD J B, et al. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots[J]. Proc Nat Acad Sci USA, 2014, 111(38): 13721-13726. doi: 10.1073/pnas.1216053111
      [46]
      XUE L, HAGIHARA A. Density effects on organs in self-thinning Pinus densiflora Sieb. et Zucc. stands[J]. Ecol Res, 2008, 23(4): 689-695. doi: 10.1007/s11284-007-0427-3
      [47]
      XUE L, PAN L, ZHANG R, et al. Density effects on the growth of self-thinning Eucalyptus urophylla stands[J]. Trees, 2011, 25(6): 1021-1031. doi: 10.1007/s00468-011-0576-4
      [48]
      POORTER H, NIKLAS K J, REICH P B, et al. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control[J]. New Phytolog, 2012, 193(1): 30-50. doi: 10.1111/j.1469-8137.2011.03952.x
      [49]
      GOWER S T, GHOLZ H L, NAKANE K, et al. Production and carbon allocation patterns of pine forests[J]. Ecol Bull, 1994, 43(43): 115-135.
      [50]
      FANG Y R, ZOU X J, LIE Z Y, et al. Variation in organ biomass with changing climate and forest characteristics across Chinese forests[J]. Forests, 2018, 9: 521. doi: 10.3390/f9090521
    • Related Articles

      [1]HUANG Jun,LU Yong-yue,ZENG Ling,WU Bi-qiu,GAO Yi-bo,XU Yi-juan. Attraction Effect Comparison of Different Setting Forms of Bait for Solenopsis invicta[J]. Journal of South China Agricultural University, 2007, 28(4): 23-25. DOI: 10.7671/j.issn.1001-411X.2007.04.006
      [2]ZENG Bi-yu,ZHU Gen-fa,LIU Hai-tao. Studies on Cross-Pollination and Fruit Set in Phalaenopsis Red Cultivars[J]. Journal of South China Agricultural University, 2007, 28(1): 117-119. DOI: 10.7671/j.issn.1001-411X.2007.01.028
      [3]CHEN You-ding,ZHANG Xu,WAN Bang-hui. Ideal Morphological Characteristics of South China Super Indica Rice at the Stage of Secondary Panicle Branch and Spikelet Primordium Differentiation in Early Crop[J]. Journal of South China Agricultural University, 2006, 27(3): 113-114,117. DOI: 10.7671/j.issn.1001-411X.2006.03.033
      [4]LUO Shi, LI Jian-guo, HUANG Xu-ming. Comparison of fruit development and sugar accumulation dynamics and fruit quality between fruits from early and late bloom‘Feizixiao’litchi[J]. Journal of South China Agricultural University, 2005, 26(4): 5-9. DOI: 10.7671/j.issn.1001-411X.2005.04.002
      [5]XIE Qin-ming,LIANG Guang-wen,LU Yong-yue,SHEN Shu-ping. Life table of the litchi fruit borer Conopomorpha sinensis in laboratory[J]. Journal of South China Agricultural University, 2005, 26(1): 50-52. DOI: 10.7671/j.issn.1001-411X.2005.01.013
      [6]YIN Jin hua,GAO Fei fei,ZHU Shu hua. A Study on Factors Related to Synthesis of Anthocyanin in Pericarp of ‘Feizixiao’ Litchi[J]. Journal of South China Agricultural University, 2001, 22(2): 18-20. DOI: 10.7671/j.issn.1001-411X.2001.02.006
      [7]Chen Dacheng, Li Ping, Hu Guibing, Ouyang Ruo, Gao Feifei, Wang Weihua,. Effect of Bagging on Fruit Coloration of Litchi (Litchi chinensis Sonn. cv. Feizixiao)[J]. Journal of South China Agricultural University, 1999, (4): 65-69.
      [9]Peng Songxing. STUDY ON THE LATERAL BUD SPROUTING AND ITS FLOWER SETTING OF ATEMOYA[J]. Journal of South China Agricultural University, 1993, (2): 107-110.
      [10]Deng Yicai Ni Yaoyuan Chen Nairong. EFFECTS OF POTASSIUM ON PHOTOSYNTHETIC CHARACTERISTICS, CARBOHYDRATE ACCUMULATION AND FRUIT-SET IN LITCHI[J]. Journal of South China Agricultural University, 1993, (2): 91-95.
    • Cited by

      Periodical cited type(8)

      1. 杜丹超,刘顺民,蒲占湑,吕佳,鹿连明. 爪哇棒束孢MSC-F1对柑橘全爪螨的毒力测定及液体发酵工艺优化. 中国生物防治学报. 2025(01): 44-53 .
      2. 鹿连明,杜丹超,胡秀荣,蒲占湑,刘顺民,吕佳,黄振东,陈国庆. 爪哇虫草MSC-f1的分离鉴定及其对多种柑橘害虫的毒力. 植物保护学报. 2025(02): 468-478 .
      3. 庞素芸,禹豹,杨新泉,胡琼波. 豆天蛾养殖过程中病原真菌的分离与鉴定. 福建农林大学学报(自然科学版). 2024(04): 451-457 .
      4. 肖勇,吴雨洪,靖湘峰,张杰,李振宇. 我国黄曲条跳甲综合治理研究进展. 植物保护. 2023(02): 22-31+64 .
      5. 谢梅琼,王龙江,何余容,吕利华. 玫烟色棒束孢转录组测序及潜在致病相关基因分析. 浙江农业学报. 2023(09): 2169-2180 .
      6. 高新菊,张蒙萌,王恒亮,祖均怀,杨文佳,乔耀淑. 联苯·啶虫脒对黄曲条跳甲的生物活性及防治效果. 农药. 2022(01): 57-60+64 .
      7. 吴煜,邓娇,张晓娜,黄凯丰,陈庆富. 黑唇平背叶蜂幼虫的形态、危害特征及杀虫菌种的筛选. 西南大学学报(自然科学版). 2022(04): 62-69 .
      8. 樊春丽,罗来凤,温文照,韦文飞,韦继光. 1株桉大毛虫病原真菌的分离鉴定及其寄主范围测定. 南方农业学报. 2022(08): 2175-2185 .

      Other cited types(3)

    Catalog

      Corresponding author: XUE Li, forxue@scau.edu.cn

      1. On this Site
      2. On Google Scholar
      3. On PubMed
      Article views (1151) PDF downloads (1388) Cited by(11)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return