YU Ming, CAI Jinhuan, XUE Li. Effects of nitrogen and phosphorus additions on carbon storage and allocation of Cinnamomum camphora seedlings under different planting densities[J]. Journal of South China Agricultural University, 2020, 41(1): 116-123. DOI: 10.7671/j.issn.1001-411X.201904025
    Citation: YU Ming, CAI Jinhuan, XUE Li. Effects of nitrogen and phosphorus additions on carbon storage and allocation of Cinnamomum camphora seedlings under different planting densities[J]. Journal of South China Agricultural University, 2020, 41(1): 116-123. DOI: 10.7671/j.issn.1001-411X.201904025

    Effects of nitrogen and phosphorus additions on carbon storage and allocation of Cinnamomum camphora seedlings under different planting densities

    More Information
    • Received Date: April 12, 2019
    • Available Online: May 17, 2023
    • Objective 

      To study carbon (C) content, storage and allocation in seedling organs of Cinnamomum camphora cultivated in four different densities under nitrogen (N) and phosphorus (P) additions, and provide information for forest C storage and allocation under the background of N deposition and P addition.

      Method 

      The 1-year-old C. camphora seedlings were used as test materials. NH4Cl and NaH2PO4·2H2O were selected to simulate atmospheric N deposition and P addition, respectively. N and P additions were performed with four different levels (control, N, P, and N+P). The N and P addition amounts per year in N, P, and N+P treatments were 40 g·m−2 NH4Cl, 20 g·m−2 NaH2PO4·2H2O and 40 g·m−2 NH4Cl + 20 g·m−2 NaH2PO4·2H2O, respectively. Seedlings were planted in four different densities (10, 20, 40 and 80 seedlings·m−2).

      Result 

      C contents in roots, stems and branches of seedlings in all treatments had no significant difference. N and N+P treatments increased C content of leaves. With the increase of planting density, C content of leaves tended to decrease. The N and P additions increased C storage per seedling and C storage in unit area. C storage per seedling decreased with the increase of planting density.

      Conclusion 

      C storage of leaves per seedling and C storage in unit area decreases with the increase of planting density. C storage percentage of stems increases in high cultivation density treatment. The effect of N+P treatment on C storage per seedling and C storage in unit area is greater than that of single N or P addition.

    • [1]
      辛小娟, 王刚, 杨莹博, 等. 氮、磷添加对亚高山草甸地上/地下生物量分配的影响[J]. 生态科学, 2014, 33(3): 452-458.
      [2]
      陈瑶, 王法明, 莫其锋, 等. 氮磷添加对华南热带森林尾叶桉木质残体分解和养分动态的影响[J]. 应用与环境生物学报, 2015, 21(4): 747-753.
      [3]
      CHEN H, ZHANG W, GILLIAM F, et al. Changes in soil carbon sequestration in Pinus massoniana forests along an urban-to-rural gradient of southern China[J]. Biogeosciences, 2013, 10(10): 6609-6616. doi: 10.5194/bg-10-6609-2013
      [4]
      刘顺, 罗达, 刘千里, 等. 川西亚高山不同森林生态系统碳氮储量及其分配格局[J]. 生态学报, 2017, 37(4): 1074-1083.
      [5]
      LUO Y, ZHANG X, WANG X, et al. Dissecting variation in biomass conversion factors across China’s forests: Implications for biomass and carbon accounting[J]. PLoS One, 2014, 9(4): e94777. doi: 10.1371/journal.pone.0094777
      [6]
      LIE Z Y, XUE L, JACOBS D F. Allocation of forest biomass across broad precipitation gradients in China’ s forests[J]. Sci Rep, 2018, 8: 10536. doi: 10.1038/s41598-018-28899-5
      [7]
      YAN G Y, XING Y J, WANG J Y, et al. Sequestration of atmospheric CO2 in boreal forest carbon pools in Northeastern China: Effects of nitrogen deposition[J]. Agric Forest Meteorol, 2018, 248: 70-81. doi: 10.1016/j.agrformet.2017.09.015
      [8]
      SPARRIUS L B, SEVINK J, KOOIJMAN A M. Effects of nitrogen deposition on soil and vegetation in primary succession stages in inland drift sands[J]. Plant Soil, 2012, 353(1/2): 261-272.
      [9]
      GAO Y, HAO Z, YANG T T, et al. Effects of atmospheric reactive phosphorus deposition on phosphorus transport in a subtropical watershed: A Chinese case study[J]. Environ Pollut, 2017, 226: 69-78. doi: 10.1016/j.envpol.2017.03.067
      [10]
      王鑫瑶, 王旭, 朱美玲, 等. 海南主要森林类型植被碳贮量与固碳价值评价[J]. 中南林业科技大学学报, 2017, 37(7): 92-98.
      [11]
      明安刚, 刘世荣, 莫慧华, 等. 南亚热带红锥、杉木纯林与混交林碳贮量比较[J]. 生态学报, 2016, 36(1): 244-251.
      [12]
      郭剑芬, 杨玉盛, 陈光水, 等. 火烧对森林土壤有机碳的影响研究进展[J]. 生态学报, 2015, 35(9): 2800-2809.
      [13]
      DEZI S, MEDLYN B E, TONON G, et al. The effect of nitrogen deposition on forest carbon sequestration: a model-based analysis[J]. Global Change Biol, 2010, 16(5): 1470-1486. doi: 10.1111/j.1365-2486.2009.02102.x
      [14]
      ZAEHLE S, CIAIS P, FRIEND A D, et al. Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions[J]. Nat Geosci, 2011(9): 601-605.
      [15]
      朱仕明, 肖玲玲, 薛立, 等. 密度对乐昌含笑幼苗的生长和生物量的影响[J]. 中南林业科技大学学报, 2015, 35(8): 77-80.
      [16]
      肖玲玲, 朱仕明, 胡继文, 等. 不同密度条件下樟树幼苗生长和幼苗重量分配格局[J]. 安徽农业大学学报, 2015, 42(3): 353-356.
      [17]
      董喜光, 张越, 薛立, 等. 不同密度的山杜英幼苗生长分析[J]. 生态科学, 2016, 35(4): 86-90.
      [18]
      伍艳芳, 肖复明, 徐海宁, 等. 樟树全基因组调查[J]. 植物遗传资源学报, 2014, 15(1): 149-152.
      [19]
      张赐成, 韩广, 关华德, 等. 樟树和桂花树光合最适温度对环境温度改变的响应[J]. 生态学杂志, 2014, 33(11): 2980-2987.
      [20]
      王卓敏, 郑欣颖, 薛立. 樟树幼苗对干旱胁迫和种植密度的生理响应[J]. 生态学杂志, 2017, 36(6): 1495-1502.
      [21]
      文丽, 雷丕锋, 戴凌. 不同林龄樟树林土壤碳氮贮量及分布特征[J]. 中南林业科技大学学报, 2014, 34(6): 106-111. doi: 10.3969/j.issn.1673-923X.2014.06.021
      [22]
      文汲, 闫文德, 刘益君, 等. 施氮对亚热带樟树人工林土壤氮矿化的影响[J]. 中南林业科技大学学报, 2015, 35(5): 103-108.
      [23]
      赵晶, 闫文德, 郑威, 等. 樟树人工林凋落物养分含量及归还量对氮沉降的响应[J]. 生态学报, 2016, 36(2): 350-359.
      [24]
      AERTS R, VANLOGTESTIJN R, KARLSSON P S. Nitrogen supply differentially affects litter decomposition rates and nitrogen dynamics of sub-arctic bog species[J]. Oecologia, 2006, 146(4): 652-658. doi: 10.1007/s00442-005-0247-5
      [25]
      佘汉基, 郑欣颖, 薛立, 等. 外源性氮和磷对尾叶桉凋落叶分解的影响[J]. 安徽农业大学学报, 2017, 44(3): 409-414.
      [26]
      鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000: 30-106.
      [27]
      陈莉, 宋敏, 宋同清, 等. 广西不同林龄软阔林碳储量及其分配格局[J]. 生态学杂志, 2017, 36(3): 592-600.
      [28]
      CURREY P M, JOHNSON D, DAWSON L A, et al. Five years of simulated atmospheric nitrogen deposition have only subtle effects on the fate of newly synthesized carbon in Calluna vulgaris and Eriophorum vaginatum[J]. Soil Biol Biochem, 2011, 43(3): 495-502. doi: 10.1016/j.soilbio.2010.11.003
      [29]
      张慧, 郭卫红, 杨秀清, 等. 麻栎种源林叶片碳、氮、磷化学计量特征的变异[J]. 应用生态学报, 2016, 27(7): 2225-2230.
      [30]
      翁俊, 顾鸿昊, 王志坤, 等. 氮沉降对毛竹叶片生态化学计量特征的影响[J]. 生态科学, 2015, 34(2): 63-70.
      [31]
      蒋思思, 魏丽萍, 杨松, 等. 不同种源油松幼苗的光合色素和非结构性碳水化合物对模拟氮沉降的短期响应[J]. 生态学报, 2015, 35(21): 7061-7070.
      [32]
      吴家兵, 井艳丽, 关德新, 等. 氮沉降对森林碳汇功能影响的研究进展[J]. 世界林业研究, 2012, 25(2): 12-16.
      [33]
      HOFMOCKEL K S. Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2[J]. Ecol Lett, 2011, 14(4): 349-57. doi: 10.1111/j.1461-0248.2011.01593.x
      [34]
      黎磊, 周道玮, 盛连喜. 密度制约决定的植物生物量分配格局[J]. 生态学杂志, 2011, 30(8): 1579-1589.
      [35]
      沈杰, 蔡艳, 何玉亭, 等. 种植密度对烤烟养分吸收及品质形成的影响[J]. 西北农林科技大学学报(自然科学版), 2016, 44(10): 51-58.
      [36]
      LU X K, MO J M, GILLIAM F S, et al. Nitrogen addition shapes soil phosphorus availability in two reforested tropical forests in southern China[J]. Biotropica, 2012, 44(3): 302-311. doi: 10.1111/j.1744-7429.2011.00831.x
      [37]
      苗惠田, 吕家珑, 张文菊, 等. 潮土小麦碳氮含量对长期不同施肥模式的响应[J]. 植物营养与肥料学报, 2015, 21(1): 72-80. doi: 10.11674/zwyf.2015.0108
      [38]
      ELSER J J, BRACKEN M E S, CLELAND E E, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems[J]. Ecol Lett, 2007, 10(12): 1135. doi: 10.1111/j.1461-0248.2007.01113.x
      [39]
      何利元, 胡中民, 郭群, 等. 氮磷添加对内蒙古温带草地地上生物量的影响[J]. 应用生态学报, 2015, 26(8): 2291-2297.
      [40]
      黄钰辉, 张卫强, 甘先华, 等. 南亚热带杉木林改造不同树种配置模式的土壤质量评价[J]. 中国水土保持科学, 2017, 15(3): 123-130.
      [41]
      樊后保, 刘文飞, 李燕燕, 等. 杉木(Cunninghamia lanceolata)人工林生长与土壤养分对氮沉降的响应[J]. 生态学报, 2007, 27(11): 4630-4642. doi: 10.3321/j.issn:1000-0933.2007.11.031
      [42]
      詹书侠, 陈伏生, 胡小飞, 等. 中亚热带丘陵红壤区森林演替典型阶段土壤氮磷有效性[J]. 生态学报, 2009, 29(9): 4673-4680. doi: 10.3321/j.issn:1000-0933.2009.09.010
      [43]
      苏波, 韩兴国, 渠春梅, 等. 森林土壤氮素可利用性的影响因素研究综述[J]. 生态学杂志, 2002, 21(2): 40-46. doi: 10.3321/j.issn:1000-4890.2002.02.011
      [44]
      XIA J Y, WAN S Q. Global response patterns of terrestrial plant species to nitrogen addition[J]. New Phytolog, 2008, 179(2): 428-439. doi: 10.1111/j.1469-8137.2008.02488.x
      [45]
      REICH P B, LUO Y, BRADFORD J B, et al. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots[J]. Proc Nat Acad Sci USA, 2014, 111(38): 13721-13726. doi: 10.1073/pnas.1216053111
      [46]
      XUE L, HAGIHARA A. Density effects on organs in self-thinning Pinus densiflora Sieb. et Zucc. stands[J]. Ecol Res, 2008, 23(4): 689-695. doi: 10.1007/s11284-007-0427-3
      [47]
      XUE L, PAN L, ZHANG R, et al. Density effects on the growth of self-thinning Eucalyptus urophylla stands[J]. Trees, 2011, 25(6): 1021-1031. doi: 10.1007/s00468-011-0576-4
      [48]
      POORTER H, NIKLAS K J, REICH P B, et al. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control[J]. New Phytolog, 2012, 193(1): 30-50. doi: 10.1111/j.1469-8137.2011.03952.x
      [49]
      GOWER S T, GHOLZ H L, NAKANE K, et al. Production and carbon allocation patterns of pine forests[J]. Ecol Bull, 1994, 43(43): 115-135.
      [50]
      FANG Y R, ZOU X J, LIE Z Y, et al. Variation in organ biomass with changing climate and forest characteristics across Chinese forests[J]. Forests, 2018, 9: 521. doi: 10.3390/f9090521
    • Cited by

      Periodical cited type(14)

      1. 潘婷婷,康喜龙,黄霞,孟闯,潘志明,焦新安. 非洲猪瘟诊断靶标的研究进展. 微生物学通报. 2025(02): 510-521 .
      2. 苗雅倩,杨艳歌,赵健淞,魏莹,王秀娟,袁飞,王正亮,张峰. 配方乳粉中6种致病菌双重酶促等温扩增快速检测方法的建立. 微生物学报. 2025(03): 1319-1336 .
      3. 赵健淞,杨艳歌,刘通,魏莹,李红娜,李涛,孙冬梅,袁飞. 现制直饮品中铜绿假单胞菌的ERA快速检测. 中国食品学报. 2025(04): 376-385 .
      4. 华冰洁. 非洲猪瘟的研究进展. 中国动物保健. 2024(02): 7-8+28 .
      5. 潘建良. 非洲猪瘟防控期间养猪场生物安全管理探讨. 今日畜牧兽医. 2023(02): 22-23+26 .
      6. 王帅,杨艳歌,吴占文,李红娜,李涛,孙冬梅,袁飞. 重组酶聚合酶扩增、重组酶介导等温扩增及酶促重组等温扩增技术在食源性致病菌快速检测中的研究进展. 食品科学. 2023(09): 297-305 .
      7. 林志伟,王帅,王迎春,吴占文,李涛,李红娜,杨艳歌,袁飞. 婴儿配方乳粉中食源性致病菌双重ERA快速检测方法的建立. 食品科学. 2023(18): 347-354 .
      8. 杨艳歌,王帅,李红娜,李涛,吴占文,孙冬梅,袁飞. 沙门氏菌ERA可视化快速检测方法的建立. 中国食品学报. 2023(10): 261-272 .
      9. 杨艳歌,吴占文,李涛,王帅,李红娜,孙冬梅,袁飞. GI和GII诺如病毒ERA的可视化快速检测. 华南理工大学学报(自然科学版). 2023(12): 140-151 .
      10. 王翠,许宗丽,黄溢泓,覃艳然,梁竞臻,周师师,刘针伶,黄小武,马小蓉,李志源,严斯刚. 非洲猪瘟病原学检测技术研究进展. 中国动物检疫. 2022(02): 74-81 .
      11. 张帅,刘媛,赵云环,刘莹,左玉柱,范京惠. 非洲猪瘟病毒研究进展. 中国兽医学报. 2022(12): 2569-2577 .
      12. 魏晓通,周宇航,刘扬,荣馨锐,张士新,徐亚维. 酶促恒温扩增技术快速鉴定食品中牡蛎成分. 食品科技. 2022(11): 255-261 .
      13. 倪俊芬,陈前岭,仲向前. 我国对非洲猪瘟病毒的研究进展综述. 中国猪业. 2022(06): 70-74 .
      14. 王良辉. 精准清洗消毒是防控非洲猪瘟的重要措施. 兽医导刊. 2021(23): 79-80 .

      Other cited types(4)

    Catalog

      Article views (1151) PDF downloads (1388) Cited by(18)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return