• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
YANG Yang, HUANG Weihao, LU Ying, et al. Spectral characteristics and quantitative retrieval of free iron content in soil[J]. Journal of South China Agricultural University, 2020, 41(1): 91-99. DOI: 10.7671/j.issn.1001-411X.201901032
Citation: YANG Yang, HUANG Weihao, LU Ying, et al. Spectral characteristics and quantitative retrieval of free iron content in soil[J]. Journal of South China Agricultural University, 2020, 41(1): 91-99. DOI: 10.7671/j.issn.1001-411X.201901032

Spectral characteristics and quantitative retrieval of free iron content in soil

More Information
  • Received Date: January 17, 2019
  • Available Online: May 17, 2023
  • Objective 

    To establish an accurate predicted model for free iron in soil based on visible and near infrared (vis-NIR) reflectance spectroscopy, provide a simple, rapid and economical method for soil free iron determination, and facilitate the pedogenesis and classification of soil.

    Method 

    Soil samples in B horizon were collected from eighty-two upland soil profiles in Guangxi including ferralosols, ferrosols, argosols and cambosols. Chemical and spectral properties of soil samples were analyzed under laboratory condition. The correlation between spectral reflectance after transformation and free iron content in soils was analyzed. The predicted models of soil free iron were established by the method of partial least squares regression (PLSR) and stepwise multiple linear regression (SMLR) based on characteristic bands. The optimal model was determined by evaluating the coefficient of determination (R2), root mean square error (RMSE), and residual prediction deviation(RPD).

    Result 

    Soil spectral curves had obvious characteristics of free iron absorption and reflection peaks near 457, 800 and 900 nm bands respectively. Free iron content in soils negatively correlated with the raw spectral reflectance. The correlation coefficient between spectral reflectance and free iron content in soils increased significantly after differential transformation of the raw spectrum. The predicted model of free iron content in soils established by the first-order differential spectral transformation and SMLR based on characteristic bands of 400−580 and 760−1 300 nm had the highest accuracy, R2 and RPD of the verification set were 0.85, and 2.62 respectively, and RMSE was 8.41 g·kg−1.

    Conclusion 

    It is feasible to rapidly and cost-effectively predict free iron content in soils using vis-NIR spectral technology. Soil spectral reflectance of upland in Guangxi has a high correlation with soil free iron content. SMLR is a good method to establish the predicted model of soil free iron content.

  • [1]
    赵小敏, 杨梅花. 江西省红壤地区主要土壤类型的高光谱特性研究[J]. 土壤学报, 2018, 55(1): 31-42. doi: 10.11766/trxb201705220571
    [2]
    SORIANO-DISLA J M, JANIK L J, ROSSEL R A V, et al. The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties[J]. Appl Spectrosc Rev, 2014, 49(2): 139-186. doi: 10.1080/05704928.2013.811081
    [3]
    BO S, ROSSEL R A V, MOUAZEN A M, et al. Visible and near infrared spectroscopy in soil science[J]. Adv Agron, 2010, 107: 163-215. doi: 10.1016/S0065-2113(10)07005-7
    [4]
    贾重建, 卢瑛, 熊凡, 等. 珠江三角洲平原不同种植年限土壤铁氧化物特征研究[J]. 土壤学报, 2017, 54(4): 894-904.
    [5]
    龚子同, 张甘霖, 陈志诚, 等. 土壤发生与系统分类[M]. 北京: 科学出版社, 2007.
    [6]
    COLEMAN T L, MONTGOMERY O L. Soil moisture, organic matter, and iron content effect on the spectral characteristics of selected vertisols and alfisols in Alabama[J]. Photogramm Eng Rem S, 1987, 53(12): 1659-1663.
    [7]
    彭杰, 向红英, 周清, 等. 土壤氧化铁的高光谱响应研究[J]. 光谱学与光谱分析, 2013, 33(2): 502-506. doi: 10.3964/j.issn.1000-0593(2013)02-0502-05
    [8]
    夏学齐, 季峻峰, 陈骏, 等. 土壤理化参数的反射光谱分析[J]. 地学前缘, 2009, 16(4): 354-362. doi: 10.3321/j.issn:1005-2321.2009.04.035
    [9]
    SUMMERS D, LEWIS M, OSTENDORF B, et al. Visible near-infrared reflectance spectroscopy as a predictive indicator of soil properties[J]. Ecol Indic, 2011, 11(1): 123-131. doi: 10.1016/j.ecolind.2009.05.001
    [10]
    谢碧裕. 南方丘陵水稻土氧化铁高光谱特性与估测模型研究[D]. 南昌: 江西农业大学, 2015.
    [11]
    熊俊峰, 郑光辉, 林晨. 基于反射光谱的土壤铁元素含量估算[J]. 光谱学与光谱分析, 2016, 36(11): 3615-3619.
    [12]
    郭颖, 郭治兴, 刘佳, 等. 亚热带典型区域水稻土氧化铁高光谱反演: 以珠江三角洲为例[J]. 应用生态学报, 2017, 28(11): 3675-3683.
    [13]
    XU D Y, MA W X, CHEN S C, et al. Assessment of important soil properties related to Chinese soil taxonomy based on vis-NIR reflectance spectroscopy[J]. Comput Electron Agr, 2018, 144: 1-8. doi: 10.1016/j.compag.2017.11.029
    [14]
    CAMARGO L A, JÙNIOR J M, BARROŃ V, et al. Mapping of clay, iron oxide and adsorbed phosphate in oxisols using diffuse reflectance spectroscopy[J]. Geoderma, 2015(251/252): 124-132.
    [15]
    SELLITTO V M, FERNANDES R, BARRÓN V, et al. Comparing two different spectroscopic techniques for the characterization of soil iron oxides: Diffuse versus bi-directional reflectance[J]. Geoderma, 2009, 149(1/2): 1-9.
    [16]
    ROSSEL R A V, BUI E N, CARITAT P D, et al. Mapping iron oxides and the color of Australian soil using visible-near-infrared reflectance spectra[J]. J Geophys Res, 2010, 115(F4): 1-13.
    [17]
    BAHIA A S R S, MARQUES J R J, SIQUEIRA D S. Procedures using diffuse reflectance spectroscopy for estimating hematite and goethite in oxisols of São Paulo, Brazil[J]. Geoderma Regional, 2015, 5: 150-156. doi: 10.1016/j.geodrs.2015.04.006
    [18]
    de SOUZA BAHIA A S R, MARQUES J R J, la SCALA N, et al. Prediction and mapping of soil attributes using diffuse reflectance spectroscopy and magnetic susceptibility[J]. Soil Sci Soc Am J, 2018, 81(6): 1450-1462.
    [19]
    魏昌龙, 赵玉国, 邬登巍, 等. 基于光谱分析的土壤游离铁预测研究[J]. 土壤, 2014, 46(4): 678-683.
    [20]
    张甘霖, 龚子同. 土壤调查实验室分析方法[M]. 北京: 科学出版社, 2012.
    [21]
    南锋, 朱洪, 毕如田. 黄土高原煤矿区复垦农田土壤有机质含量的高光谱预测[J]. 中国农业科学, 2016, 49(11): 2126-2135. doi: 10.3864/j.issn.0578-1752.2016.11.009
    [22]
    VOLKAN BILGILI A, van ES H M, AKBAS F, et al. Visible-near infrared reflectance spectroscopy for assessment of soil properties in a semi-arid area of Turkey[J]. J Arid Environ, 2010, 74(2): 229-238. doi: 10.1016/j.jaridenv.2009.08.011
    [23]
    石朴杰, 王世东, 张合兵, 等. 基于高光谱的复垦农田土壤有机质含量估测[J]. 土壤, 2018, 50(3): 558-565.
    [24]
    史舟, 王乾龙, 彭杰, 等. 中国主要土壤高光谱反射特性分类与有机质光谱预测模型[J]. 中国科学: 地球科学, 2014, 44(5): 978-988.
    [25]
    VOHLAND M, BESOLD J, HILL J, et al. Comparing different multivariate calibration methods for the determination of soil organic carbon pools with visible to near infrared spectroscopy[J]. Geoderma, 2011, 166(1): 198-205. doi: 10.1016/j.geoderma.2011.08.001
    [26]
    黄应丰, 刘腾辉. 华南主要土壤类型的光谱特性与土壤分类[J]. 土壤学报, 1995, 32(1): 58-68. doi: 10.3321/j.issn:0564-3929.1995.01.001
    [27]
    何挺, 王静, 程烨, 等. 土壤氧化铁光谱特征研究[J]. 地理与地理信息科学, 2006, 22(2): 30-34. doi: 10.3969/j.issn.1672-0504.2006.02.008
    [28]
    GALVAO L S, VITORELLO I. Role of organic matter in obliterating the effects of iron on spectral reflectance and color of Brazilian tropical soils[J]. Int J Remote Sens, 1998, 19(10): 1969-1979. doi: 10.1080/014311698215090

Catalog

    Article views (1112) PDF downloads (1858) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return