• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
ZHOU Pincheng, LIU Xiqiang, KANG Xingsheng, et al. Removal effects of four aquatic plants on veterinary antibiotics[J]. Journal of South China Agricultural University, 2019, 40(6): 67-73. DOI: 10.7671/j.issn.1001-411X.201901020
Citation: ZHOU Pincheng, LIU Xiqiang, KANG Xingsheng, et al. Removal effects of four aquatic plants on veterinary antibiotics[J]. Journal of South China Agricultural University, 2019, 40(6): 67-73. DOI: 10.7671/j.issn.1001-411X.201901020

Removal effects of four aquatic plants on veterinary antibiotics

More Information
  • Received Date: January 07, 2019
  • Available Online: May 17, 2023
  • Objective 

    To reduce veterinary antibiotic residues in domestic sewage and livestock breeding wastewater, and screen aquatic plants which can better remove veterinary antibiotics in water for plant restoration and artificial wetland.

    Method 

    Four commonly used aquatic plants (Pennisetum hydridum, Cyperus alternifolius, Canna indica and Pontderia cordata) and three kinds of commonly used veterinary antibiotics (amoxicillin, florfenicol and doxycycline hydrochloride) were selected to construct the hydroponic experiment system for evaluating the tolerance and removal efficiency of antibiotics in water.

    Result 

    Four different aquatic plant species had a certain efficiency on removing the selected veterinary antibiotics after 14 days of hydroponic culture. Three kinds of antibiotics had a positive effect on increasing plant height and chlorophyll content at low and medium concentrations of 0−100 mg/L, and inhibited plant growth and decreased chlorophyll content at high concentration above 100 mg/L. Besides, there was significant difference between the treatment groups and the control group. The highest removal efficiency was observed for each plant at 14 days after 100 mg/L antibiotics stress treatment. P. hydridum, C. indica and C. indica were the best selected plants to remove amoxicillin, florfenicol, and doxycycline hydrochloride respectively, and the removal rates were 55.0%, 56.2% and 48.3% respectively.

    Conclusion 

    The efficiency of four kinds of plants to remove veterinary antibiotics in water was in order of C. plantsiana>P. hydridum>P. cordata=C. alternifolius.

  • [1]
    李新慧, 郑权, 李静, 等. 氟喹诺酮对垂直流人工湿地性能及微生物群落的影响[J]. 环境科学, 2018, 39(10): 4809-4816.
    [2]
    吴凡, 屠荫奇, 宋歌. 浅谈畜禽养殖过程中抗生素污染情况[J]. 科技致富向导, 2013(29): 67.
    [3]
    EZZARIAI A, HAFIDI M, KHADRA A, et al. Human and veterinary antibiotics during composting of sludge or manure: Global perspectives on persistence, degradation, and resistance genes[J]. J Hazard Mater, 2018, 359: 465-481. doi: 10.1016/j.jhazmat.2018.07.092
    [4]
    YANG G, WANG C L, CHIU Y H. Occurrence and distribution of phthalate esters and pharmaceuticals in Taiwan river sediments[J]. J Soil Sediment, 2015, 15(1): 198-210.
    [5]
    CHARUAUD L, JARDE E, JAFFREZIC A, et al. Veterinary pharmaceutical residues from natural water to tap water: Sales, occurrence and fate[J]. J Hazard Mater, 2019, 361: 169-186. doi: 10.1016/j.jhazmat.2018.08.075
    [6]
    LENG Y, BAO J, SONG D, et al. Background nutrients affect the biotransformation of tetracycline by Stenotrophomonas maltophilia as revealed by genomics and proteomics[J]. Environ Sci Technol, 2017, 51(18): 10476-10484. doi: 10.1021/acs.est.7b02579
    [7]
    XIONG H, ZOU D, ZHOU D, et al. Enhancing degradation and mineralization of tetracycline using intimately coupled photocatalysis and biodegradation (ICPB)[J]. Chem Eng J, 2017, 316: 7-14. doi: 10.1016/j.cej.2017.01.083
    [8]
    HUANG X, ZHANG X, FENG F, et al. Biodegradation of tetracycline by the yeast strain Trichosporon mycotoxinivorans XPY-10[J]. Prep Biochem Biotech, 2016, 46(1): 15-22. doi: 10.1080/10826068.2014.970692
    [9]
    WANG J, ZHI D, ZHOU H, et al. Evaluating tetracycline degradation pathway and intermediate toxicity during the electrochemical oxidation over a Ti/Ti4O7 anode[J]. Water Res, 2018, 137: 324-334. doi: 10.1016/j.watres.2018.03.030
    [10]
    XIONG H, DONG S, ZHANG J, et al. Roles of an easily biodegradable co-substrate in enhancing tetracycline treatment in an intimately coupled photocatalytic-biological reactor[J]. Water Res, 2018, 136: 75-83. doi: 10.1016/j.watres.2018.02.061
    [11]
    SENGUPTA A, SARKAR D, DAS P, et al. Tetracycline uptake and metabolism by vetiver grass (Chrysopogon zizanioides L. Nash)[J]. Environ Sci Pollut R, 2016, 23(24): 24880-24889. doi: 10.1007/s11356-016-7688-8
    [12]
    BERGLUND B, KHAN G A, WEISNER S E B, et al. Efficient removal of antibiotics in surface-flow constructed wetlands, with no observed impact on antibiotic resistance genes[J]. Sci Total Environ, 2014, 476/477: 29-37. doi: 10.1016/j.scitotenv.2013.12.128
    [13]
    CHOI Y, KIM L, ZOH K. Removal characteristics and mechanism of antibiotics using constructed wetlands[J]. Ecol Eng, 2016, 91: 85-92. doi: 10.1016/j.ecoleng.2016.01.058
    [14]
    陈铭孙, 李择桂, 林贤柯, 等. 低镉铅甜玉米品种筛选及在间套种修复污染土壤中的应用[J]. 江苏农业科学, 2018(17): 285-289.
    [15]
    陈静雅, 王晓昌, 郑于聪, 等. 潮汐流人工湿地对高污染河水氮磷的去除特性[J]. 环境科学与技术, 2017, 40(12): 32-37.
    [16]
    YAN Q, FENG G, GAO X, et al. Removal of pharmaceutically active compounds (PhACs) and toxicological response of Cyperus alternifolius exposed to PhACs in microcosm constructed wetlands[J]. J Hazard Mater, 2016, 301: 566-575. doi: 10.1016/j.jhazmat.2015.08.057
    [17]
    杨登, 尹晓辉, 邹慧玲, 等. 生物塘−人工湿地工艺去除农田灌溉水中镉污染的效果[J]. 环境工程技术学报, 2018, 8(2): 155-160. doi: 10.3969/j.issn.1674-991X.2018.02.021
    [18]
    陈小洁, 李凤玉, 郝雅宾. 两种水生植物对抗生素污染水体的修复作用[J]. 亚热带植物科学, 2012, 41(4): 1-7.
    [19]
    LIANG Y, ZHU H, BAÑUELOS G, et al. Removal of sulfamethoxazole from salt-laden wastewater in constructed wetlands affected by plant species, salinity levels and co-existing contaminants[J]. Chem Eng J, 2018, 341: 462-470. doi: 10.1016/j.cej.2018.02.059
    [20]
    王磊, 汤家鑫, 高兴国, 等. PEG模拟干旱胁迫条件下光叶珙桐幼苗叶片叶绿素含量变化[J]. 安徽农业科学, 2018(32): 91-92. doi: 10.3969/j.issn.0517-6611.2018.32.026
    [21]
    WANG H, WANG N, WANG B, et al. Antibiotics detected in urines and adipogenesis in school children[J]. Environ Int, 2016, 89/90: 204-211. doi: 10.1016/j.envint.2016.02.005
    [22]
    冷一非. 微生物降解四环素特性及降解机理研究[D]. 武汉: 中国地质大学, 2017.
    [23]
    BOXALL A B, JOHNSON P, SMITH E J, et al. Uptake of veterinary medicines from soils into plants[J]. J Agr Food Chem, 2006, 54(6): 2288-2297.
    [24]
    LUO Y, XU L, RYSZ M, et al. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China[J]. Environ Sci Technol, 2011, 45(5): 1827-1833. doi: 10.1021/es104009s
    [25]
    WEBER K P, MITZEL M R, SLAWSON R M, et al. Effect of ciprofloxacin on microbiological development in wetland mesocosms[J]. Water Res, 2011, 45(10): 3185-3196. doi: 10.1016/j.watres.2011.03.042
    [26]
    TAI Y, TAM N F, DAI Y, et al. Assessment of rhizosphere processes for removing water-borne macrolide antibiotics in constructed wetlands[J]. Plant Soil, 2017, 419(1/2): 489-502. doi: 10.1007/s11104-017-3359-x
    [27]
    LIAO X, ZOU R, LI B, et al. Biodegradation of chlortetracycline by acclimated microbiota[J]. Process Saf Environ, 2017, 109: 11-17. doi: 10.1016/j.psep.2017.03.015
    [28]
    CHUNG H S, LEE Y, RAHMAN M M, et al. Uptake of the veterinary antibiotics chlortetracycline, enrofloxacin, and sulphathiazole from soil by radish[J]. Sci Total Environ, 2017, 605/606: 322-331. doi: 10.1016/j.scitotenv.2017.06.231

Catalog

    Article views (1686) PDF downloads (4040) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return