ZHANG Zhuo, WANG Xiaochan, ZHAO Jin, et al. Design and experiment of root heating system for greenhouse potted crops[J]. Journal of South China Agricultural University, 2020, 41(1): 124-132. DOI: 10.7671/j.issn.1001-411X.201901005
    Citation: ZHANG Zhuo, WANG Xiaochan, ZHAO Jin, et al. Design and experiment of root heating system for greenhouse potted crops[J]. Journal of South China Agricultural University, 2020, 41(1): 124-132. DOI: 10.7671/j.issn.1001-411X.201901005

    Design and experiment of root heating system for greenhouse potted crops

    More Information
    • Received Date: January 02, 2019
    • Available Online: May 17, 2023
    • Objective 

      To design a root heating system suitable for dwarf crops, so as to solve the problem that potted crops in greenhouse without heating equipment in the Yangtze river delta region are vulnerable to low temperature and cold damage in winter.

      Method 

      A nested double-layer cultivation pot was designed. The interlayer was filled with insulating fat foaming agent. Two silicone rubber heating plates of 80 W/m2 and 15 cm ×12 cm were placed in the substrate of the cultivation pot. The heating plate was controlled by STM32 MCU, which output signals to the solid state relay for heating power control. Fuzzy PID control algorithm was used to control the temperature of the crop root area to the set value in real time.

      Result 

      The relative error of root zone temperature control did not exceed 5%. Under the condition of continuous low temperature (average temperature below 5 ℃ for a week), when the root zone set temperature was 15, 20 and 25 ℃, the average daytime temperature of the aboveground parts with 30-35 cm height of crops increased by 1.4, 2.6 and 3.7 ℃ respectively compared with the control group, while their average night temperature increased by 2.1, 2.9 and 4.0 ℃ respectively. Compared with the common pot, the pots with root zone temperature of 15, 20, 25 ℃ saved electric energy by 24.2%, 25.3% and 23.8% respectively.

      Conclusion 

      Under the condition of continuous low temperature, our system can not only effectively increase the temperature of crop root zone, but also can heat up the aboveground part of crop. Under certain conditions, our system can alleviate the effects of cold stress on winter crop growth.

    • [1]
      王艳利, 成磊. 浅谈冬季大棚蔬菜种植注意事项[J]. 种子科技, 2018, 36(11): 65-67. doi: 10.3969/j.issn.1005-2690.2018.11.050
      [2]
      傅国海, 杨其长, 刘文科. LED补光和根区加温对日光温室起垄内嵌式基质栽培甜椒生长及产量的影响[J]. 中国生态农业学报, 2017, 25(2): 230-238.
      [3]
      廉勇, 崔世茂, 包秀霞, 等. 根区温度对辣椒幼苗生理特性的影响[J]. 华北农学报, 2014, 29(5): 156-160. doi: 10.7668/hbnxb.2014.05.027
      [4]
      李文, 杨其长, 张义, 等. 日光温室主动蓄放热系统应用效果研究[J]. 中国农业气象, 2013, 34(5): 557-562. doi: 10.3969/j.issn.1000-6362.2013.05.009
      [5]
      陈冰, 罗小林, 毕方琳, 等. 温室太阳能与空气源热泵联合加温系统的试验[J]. 中国农业科技导报, 2011, 13(1): 55-59. doi: 10.3969/j.issn.1008-0864.2011.01.09
      [6]
      石惠娴, 任亦可, 孟祥真, 等. 植物工厂水蓄能型地下水源热泵供热系统节能运行特性研究[J]. 农业工程学报, 2018, 34(23): 157-163. doi: 10.11975/j.issn.1002-6819.2018.23.019
      [7]
      EDWARD F, MUDITHA A, WU J Z. Modelling and analysis of a ground source heat pump combined with a PV-T and earth energy storage system[J]. Energy Procedia, 2017, 142: 886-891. doi: 10.1016/j.egypro.2017.12.142
      [8]
      胡涛, 周群, 肖仁政, 等. 水蓄能地源热泵系统的一种在线优化运行控制[J]. 太阳能学报, 2018, 39(2): 496-503.
      [9]
      陈祎. 植物根区加热降低温室能源消耗[J]. 农业工程技术: 温室园艺, 2008(3): 20.
      [10]
      何芬, 侯永, 李恺, 等. 碳晶电热膜根区加温对日光温室育苗环境温度的影响[J]. 北方园艺, 2018, 42(23): 60-64.
      [11]
      张红梅, 金海军, 丁小涛, 等. 不同加温装置对冬季黄瓜育苗和生长的影响[J]. 中国瓜菜, 2012, 25(4): 12-15. doi: 10.3969/j.issn.1673-2871.2012.04.004
      [12]
      周长吉. 周博士考察拾零(十七)一种使用太阳能平板集热器提高日光温室地温的方法[J]. 农业工程技术: 温室园艺, 2012(8): 18.
      [13]
      赵云龙, 于贤昌, 李衍素, 等. 碳晶电地热系统在日光温室番茄生产中的应用[J]. 农业工程学报, 2013, 29(7): 131-138.
      [14]
      杨小平, 荣浩鸣, 戴小军. 橡胶/碳纤维层压复合导电发热板的电学性能研究[J]. 橡胶工业, 2000(1): 9-13. doi: 10.3969/j.issn.1000-1255.2000.01.003
      [15]
      张海桥. 碳晶电热板系统运行调节的实验及模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.
      [16]
      李衍素, 赵云龙, 贺超兴, 等. 碳晶电热板在日光温室黄瓜冬季育苗中的应用效果[J]. 中国农业大学学报, 2014, 19(6): 126-133.
      [17]
      彭东玲, 张义, 方慧, 等. 日光温室墙体一维导热的MATLAB模拟与热流分析[J]. 中国农业大学学报, 2014, 19(5): 174-179.
      [18]
      章熙民, 任泽霈, 陈钟颀. 传热学[M]. 4版. 北京: 中国建筑工业出版社, 2001: 15.
      [19]
      常彩涛. 辣椒耐低温研究概述[J]. 辣椒杂志, 2011, 9(1): 6-8. doi: 10.3969/j.issn.1672-4542.2011.01.002
      [20]
      韩明丽, 朱建方, 赵根, 等. 冬春季低温阴雨雪寡照对蔬菜育苗的不利影响及应对措施[J]. 长江蔬菜, 2018(16): 12-16.
      [21]
      吴广霞, 唐献龙, 杨德光, 等. 植物低温胁迫生理研究进展[J]. 作物杂志, 2008, 181(3): 17-19. doi: 10.3969/j.issn.1001-7283.2008.03.005
      [22]
      董全成, 冯显英. 基于自适应模糊免疫PID的轧花自动控制系统[J]. 农业工程学报, 2013, 29(23): 30-37. doi: 10.3969/j.issn.1002-6819.2013.23.005
      [23]
      岳文杰, 谢守勇. 基于模糊PID的温室温度控制器设计与仿真[J]. 农机化研究, 2014, 36(4): 194-197. doi: 10.3969/j.issn.1003-188X.2014.04.047
      [24]
      HARINATH E, MANN G K I. Design and tuning of standard additive model based fuzzy PID controllers for multivariable process systems[J]. IEEE T Syst Man Cy C, 2008, 38(3): 667-674.
      [25]
      陆森, 任图生. 不同温度下的土壤热导率模拟[J]. 农业工程学报, 2009, 25(7): 13-18. doi: 10.3969/j.issn.1002-6819.2009.07.003
      [26]
      徐刚毅, 刘明池, 李武, 等. 电锅炉供暖日光温室土壤加温系统[J]. 中国农学通报, 2011, 27(14): 171-174.
      [27]
      柴立龙, 马承伟, 张义, 等. 北京地区温室地源热泵供暖能耗及经济性分析[J]. 农业工程学报, 2010, 26(3): 249-254.
    • Cited by

      Periodical cited type(1)

      1. 戚海燕,闫干干,闫浩浩,刘志成,刘晓丽,刘晓平,陈云雨. 新型冠状病毒木瓜样蛋白酶抑制剂荧光共振能量转移高通量筛选模型的建立与应用. 包头医学院学报. 2024(09): 74-80 .

      Other cited types(2)

    Catalog

      Article views (1173) PDF downloads (1536) Cited by(3)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return