• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
HU Zhiwei, YANG Hua, HUANG Jiming, et al. Fine-grained tomato disease recognition based on attention residual mechanism[J]. Journal of South China Agricultural University, 2019, 40(6): 124-132. DOI: 10.7671/j.issn.1001-411X.201812048
Citation: HU Zhiwei, YANG Hua, HUANG Jiming, et al. Fine-grained tomato disease recognition based on attention residual mechanism[J]. Journal of South China Agricultural University, 2019, 40(6): 124-132. DOI: 10.7671/j.issn.1001-411X.201812048

Fine-grained tomato disease recognition based on attention residual mechanism

More Information
  • Received Date: December 24, 2018
  • Available Online: May 17, 2023
  • Objective 

    To solve the insufficient identification of fine-grained tomato diseases in greenhouse.

    Method 

    Taking tomato leaves with five early or late diseases as research objects, we proposed a new convolutional neural network model ARNet based on the combination of attention and residual thought. A multi-layered attention module was introduced to solve the problem of early disease location dispersion and the difficulty of feature extraction by extracting hierarchically disease classification information. In order to avoid the degradation of network training, we constructed a residual module to effectively integrate high- and low-order features. Meantime, we introduced the data expansion technology to prevent model over-fitting.

    Result 

    Model training and testing results of early and late disease leaf datasets with 44 295 pictures showed that ARNet has better classification performance with an average recognition accuracy of 88.2%, which was significantly higher than those of other existing models. In addition, the identification accuracy of ARNet for early disease was significantly better than that for late disease, which verified the effectiveness of attention mechanism in extracting fine region features, and there was no excessive jitter during training process.

    Conclusion 

    This model proposed in this paper has strong robustness and high stability, and can provide a reference for intelligent diagnosis of fine-grained tomato diseases in practical application.

  • [1]
    BAI X, LI X, FU Z, et al. A fuzzy clustering segmentation method based on neighborhood grayscale information for defining cucumber leaf spot disease images[J]. Comput Electron Agric, 2017, 136: 157-165. doi: 10.1016/j.compag.2017.03.004
    [2]
    王翔宇, 温皓杰, 李鑫星, 等. 农业主要病害检测与预警技术研究进展分析[J]. 农业机械学报, 2016, 47(9): 266-277. doi: 10.6041/j.issn.1000-1298.2016.09.037
    [3]
    龙满生, 欧阳春娟, 刘欢, 等. 基于卷积神经网络与迁移学习的油茶病害图像识别[J]. 农业工程学报, 2018, 34(18): 194-201. doi: 10.11975/j.issn.1002-6819.2018.18.024
    [4]
    MOKHTAR U, ALI M A S, HASSENIAN A E, et al. Tomato leaves diseases detection approach based on support vector machines[C]//IEEE. Computer Engineering Conference (ICENCO). Egypt: IEEE, 2015: 246-250.
    [5]
    XIE C, SHAO Y, LI X, et al. Detection of early blight and late blight diseases on tomato leaves using hyperspectral imaging[J]. Sci Rep, 2015, 5: 16564. doi: 10.1038/srep16564
    [6]
    柴阿丽, 李宝聚, 石延霞, 等. 基于计算机视觉技术的番茄叶部病害识别[J]. 园艺学报, 2010, 37(9): 1423-1430.
    [7]
    AMARA J, BOUAZIZ B, ALGERGAWY A. A deep learning based approach for banana leaf diseases classification[M]// MITSCHANG B. Lecture Notes in Informatics (LNI). Bonn : Gesellschaft Für Informatik, 2017: 79-88.
    [8]
    马浚诚, 杜克明, 郑飞翔, 等. 基于卷积神经网络的温室黄瓜病害识别系统[J]. 农业工程学报, 2018, 34(12): 186-192. doi: 10.11975/j.issn.1002-6819.2018.12.022
    [9]
    DURMUS H, GUNES E O, KIRCI M. Disease detection on the leaves of the tomato plants by using deep learning[C]//IEEE. 2017 6th International Conference on Agro-Geoinformatics. Fairfax VA: IEEE, 2017: 1-5.
    [10]
    FUENTES A, YOON S, KIM S C, et al. A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition[J]. Sensors, 2017, 17(9): 2022. doi: 10.3390/s17092022
    [11]
    BRAHIMI M, BOUKHALFA K, MOUSSAOUI A. Deep learning for tomato diseases: Classification and symptoms visualization[J]. Appl Artif Intell, 2017, 31(4): 299-315.
    [12]
    VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Curran Associates. Advances in Neural Information Processing Systems(NIPS). New York: Curran Associates, 2017: 5998-6008.
    [13]
    LETARTE G, PARADIS F, GIGUERE P, et al. Importance of self-attention for sentiment analysis[C]// Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP. Brussels: Association for Computational Linguistics. 2018: 267-275.
    [14]
    YU C, WANG J, PENG C, et al. BiSeNet: Bilateral segmentation network for real-time semantic segmentation [C]//Springer. Proceedings of the European Conference on Computer Vision (ECCV). Munich: Springer, 2018: 325-341.
    [15]
    WANG F, JIANG M, QIAN C, et al. Residual attention network for image classification[C]//IEEE. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 3156-3164.
    [16]
    FU J, ZHENG H, MEI T. Look closer to see better: Recurrent attention convolutional neural network for fine-grained image recognition[C]//IEEE. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 4476-4484.
    [17]
    HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//IEEE. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 770-778.
    [18]
    HE K, ZHANG X, REN S, et al. Identity mappings in deep residual networks[C]//Springer. Proceedings of the European Conference on Computer Vision (ECCV). Amsterdam : Springer, 2016: 630-645.
    [19]
    ZHANG K, SUN M, HAN T X, et al. Residual networks of residual networks: Multilevel residual networks[J]. IEEE T Circ Syst Vid, 2018, 28(6): 1303-1314. doi: 10.1109/TCSVT.2017.2654543
    [20]
    孙俊, 谭文军, 毛罕平, 等. 基于改进卷积神经网络的多种植物叶片病害识别[J]. 农业工程学报, 2017, 33(19): 209-215. doi: 10.11975/j.issn.1002-6819.2017.19.027
    [21]
    SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//IEEE. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016: 2818-2826.
    [22]
    CHOLLET F. Xception: Deep Learning with Depthwise Separable Convolutions[C]//IEEE. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017: 1800-1807.
    [23]
    SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C]//IEEE. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City: IEEE, 2018: 4510-4520.
    [24]
    RUSSAKOVSKY O, DENG J, SU H, et al. Imagenet large scale visual recognition challenge[J]. Int J Comput Vision, 2015, 115(3): 211-252. doi: 10.1007/s11263-015-0816-y
  • Cited by

    Periodical cited type(28)

    1. 王新玉,刘坤,李禹彤,魏传志,杜峰. 深度学习在番茄叶片病害识别中的应用研究. 热带农业工程. 2025(02): 18-22 .
    2. 封成智,刘强德,王志伟,秦春林,杨蕾,白玉龙,马海霞,杨城,丁宏斌. 基于深度学习的番茄叶片病害可视化识别技术研究. 江苏农业科学. 2025(05): 174-183 .
    3. 裴文杰,刘拥民,胡魁,石婷婷. 面向复杂背景的CFFA—ResNet苹果叶片病害识别模型构建. 中国农机化学报. 2025(06): 169-175 .
    4. 白尚旺,王梦瑶,胡静,陈志泊. 多区域注意力的细粒度图像分类网络. 计算机工程. 2024(01): 271-278 .
    5. 李名博,任东悦,郭俊旺,卫勇. 基于改进YOLOX-S的玉米病害识别. 江苏农业科学. 2024(03): 237-246 .
    6. 李显娜,吴强,张一丹,周康. 自监督学习下小样本番茄叶片病害检测. 中国农机化学报. 2024(07): 172-179 .
    7. 韩鹏飞,宋其江,贾梦实. 基于改进轻量化EfficientNet-V2模型的小麦种子分类. 中国农机化学报. 2024(09): 111-117 .
    8. 黄志龙. 基于改进YOLOv5s的番茄叶片病虫害识别方法. 电大理工. 2024(03): 1-7+17 .
    9. 高泉,刘笠溶,张洁,高颜军,叶荣. 基于ActNN-YOLO v5s-RepFPN的番茄病害识别及系统设计. 江苏农业科学. 2024(20): 220-227 .
    10. 刘拥民,刘翰林,石婷婷,欧阳金怡,黄浩,谢铁强. 一种优化的Swin Transformer番茄叶片病害识别方法. 中国农业大学学报. 2023(04): 80-90 .
    11. 陈从平,钮嘉炜,丁坤,姜金涛. 基于深度学习的马铃薯病害智能识别. 计算机仿真. 2023(02): 214-217+222 .
    12. 王磊,袁英,高玲. 基于改进多元宇宙算法的番茄病害图像识别. 中国农机化学报. 2023(05): 176-181+222 .
    13. 王明英,王嘉,裴志远,李宇豪,李荣荣. 基于深度学习的番茄叶部病害识别方法研究. 农业灾害研究. 2023(08): 25-27 .
    14. 李云红,张蕾涛,谢蓉蓉,朱景坤,刘杏瑞. 基于AT-DenseNet网络的番茄叶片病害识别方法. 江苏农业科学. 2023(21): 209-217 .
    15. 牛学德,高丙朋,南新元,石跃飞. 基于改进DenseNet卷积神经网络的番茄叶片病害检测. 江苏农业学报. 2022(01): 129-134 .
    16. 陆仲达,张春达,张佳奇,王子菲,许军华. 双分支网络的苹果叶部病害识别. 计算机科学与探索. 2022(04): 917-926 .
    17. 刘晓锋,高丽梅. 基于改进空间残差收缩网络模型的农作物病虫害识别. 山东农业大学学报(自然科学版). 2022(02): 259-264 .
    18. 徐志京,孙久武,霍煜豪. 多特征区域的细粒度船舶图像目标识别方法. 计算机工程与应用. 2022(10): 224-230 .
    19. 胡玲艳,周婷,刘艳,许巍,盖荣丽,李晓梅,裴悦琨,汪祖民. 基于轻量级网络自适应特征提取的番茄病害识别. 江苏农业学报. 2022(03): 696-705 .
    20. 贾兆红,张袁源,王海涛,梁栋. 基于Res2Net和双线性注意力的番茄病害时期识别方法. 农业机械学报. 2022(07): 259-266 .
    21. 赵子皓,杨再强. 番茄不同病害类型的图像特征精准识别仿真. 计算机仿真. 2022(10): 245-249 .
    22. 田佳鹭,邓立国. 结合嵌入模块的细粒度图像分类方法. 现代计算机. 2021(11): 106-110 .
    23. 张宁,吴华瑞,韩笑,缪祎晟. 基于多尺度和注意力机制的番茄病害识别方法. 浙江农业学报. 2021(07): 1329-1338 .
    24. 马宇,单玉刚,袁杰. 基于三通道注意力网络的番茄叶部病害识别. 科学技术与工程. 2021(25): 10789-10795 .
    25. 齐永锋,张宁宁. 基于多任务学习的番茄叶片图像病害程度分类. 光电子·激光. 2021(08): 833-840 .
    26. Wen Xin,Jia Yin-jiang,Su Zhong-bin. Identification of Typical Rice Diseases Based on Interleaved Attention Neural Network. Journal of Northeast Agricultural University(English Edition). 2021(04): 87-96 .
    27. 吴开兴,苗雪菲,马文妙. 基于卷积神经网络的番茄叶部病害识别研究. 电脑知识与技术. 2020(25): 25-27 .
    28. 王春山,周冀,吴华瑞,滕桂法,赵春江,李久熙. 改进Multi-scale ResNet的蔬菜叶部病害识别. 农业工程学报. 2020(20): 209-217 .

    Other cited types(46)

Catalog

    Article views (1628) PDF downloads (2167) Cited by(74)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return