Citation: | SHU Lingling, XU Liuliu, QI Kezong, et al. Effect of pagP gene deletion on outer membrane characteristics of avian pathogenic Escherichia coli[J]. Journal of South China Agricultural University, 2019, 40(6): 8-14. DOI: 10.7671/j.issn.1001-411X.201811038 |
To study the effect of pagP gene deletion on outer membrane characteristics of avian pathogenic Escherichia coli(APEC).
The minimal inhibitory concentration (MIC) experiment was used to explore the effect of pagP deletion on the permeability of outer membrane of strain. Autoaggregation experiment, outer membrane hydrophobicity test, and analysis of biofilm-forming conditions of strain were performed to understand the influence of pagP deletion on biofilm-forming ability. The biofilm morphology was observed by scanning electron microscopy.
The MIC of strain decreased after the deletion of pagP gene, the outer membrane permeability of strain increased, and the autoaggregation ability of strain increased significantly (P<0.01). The MICs of erythromycin and ampicillin were 7 and 20 μg/mL respectively. The autoaggregation ability of strain was 87.89%. The deletion ofpagP gene had no significant effect on the hydrophobicity of outer membrane of strain, and the hydrophobicity was only 5.337%. The amount of biofilm increased with the increase of time when the strain was cultured in LB medium. The strain with pagP deletion had higher biofilm-forming ability than wild strain.
The deletion of pagP gene can change the characteristics of outer membrane of APEC and enhance the biofilm-forming ability.
[1] |
NIKAIDO H. Molecular basis of bacterial outer membrane permeability revisited[J]. Microbiol Mol Biol Rev, 2003, 67(4): 593-656. doi: 10.1128/MMBR.67.4.593-656.2003
|
[2] |
HUANG T P, SOMERS E B, WONG A C. Differential biofilm formation and motility associated with lipopoly saccharide/exopolysaccharide-coupled biosynthetic genes in Stenotrophomonas maltophilia[J]. J Bacteriol, 2006, 188(8): 3116-3120. doi: 10.1128/JB.188.8.3116-3120.2006
|
[3] |
洪水根, 汪德耀. 膜分子生物学[M]. 基隆: 水产出版社, 1997: 60-73.
|
[4] |
COSTERTON J W, LEWANDOWSKI Z, CALDWELL D E, et al. Microbial biofilms[J]. Ann Rev Microbiol, 1995, 49: 711-745. doi: 10.1146/annurev.mi.49.100195.003431
|
[5] |
BRABETZ W, MULLER-LOENNIES S, HOLST O, et al. Deletion of the heptosyltransferase genes rfaC and rfaF in Escherichia coli K-12 results in an Re-type lipopolysaccharide with a high degree of 2-aminoethanol phosphate substitution[J]. Eur J Biochem, 1997, 247(2): 716-724. doi: 10.1111/ejb.1997.247.issue-2
|
[6] |
KAROW M, GEORGOPOULOS C. Isolation and characterization of the Escherichia coli msbB gene, a multicopy suppressor of null mutations in the high-temperature requirement gene htrB[J]. J Bacteriol, 1992, 174(3): 702-710. doi: 10.1128/jb.174.3.702-710.1992
|
[7] |
LAU P C Y, LINDHOUT T, BEVERIDGE T J, et al. Differential lipopolysaccharide core capping leads to quantitative and correlated modifications of mechanical and structural properties in Pseudomonas aeruginosa biofilms[J]. J Bacteriol, 2009, 191(21): 6618-6631. doi: 10.1128/JB.00698-09
|
[8] |
CARTY S M, SREEKUMAR K R, RAETZ C R H. Effect of cold shock on lipid A biosynthesis in Escherichia coli. Induction at 12℃ of an acyltransferase specific for palmitoleoyl-acyl carrier protein[J]. J Biol Chem, 1999, 274(14): 9677-9685. doi: 10.1074/jbc.274.14.9677
|
[9] |
BROOKE J S, ALBERT V, WATTS P, et al. Mutation of a lipopolysaccharide synthesis gene results in increased biofilm of Stenotrophomonas maltophilia, on plastic and glass surfaces[J]. Ann Microbiol, 2008, 58(1): 35-40. doi: 10.1007/BF03179442
|
[10] |
BERTRAND N, HOULE S, LEBIHAN G, et al. Increased Pho regulon activation correlates with decreased virulence of an avian pathogenic Escherichia coli O78 strain[J]. Infec Immun, 2010, 78(12): 5324-5331. doi: 10.1128/IAI.00452-10
|
[11] |
BISHOP R E. The lipid A palmitoyltransferase pagP: Molecular mechanisms and role in bacterial pathogenesis[J]. Mol Microbiol, 2005, 57(4): 900-912. doi: 10.1111/j.1365-2958.2005.04711.x
|
[12] |
BISHOP R E, GIBBONS H S, GUINA T, et al. Transfer of palmitate from phospholipids to lipid A in outer membranes of gram-negative bacteria[J]. Embo Journal, 2000, 19: 5071-5080. doi: 10.1093/emboj/19.19.5071
|
[13] |
RAETZ C R H, REYNOLDS C M, TRENT M S, et al. Lipid A modification systems in gram-negative bacteria[J]. Annu Rev Biochem, 2007, 76: 295-329. doi: 10.1146/annurev.biochem.76.010307.145803
|
[14] |
PRESTON A, MAXIM E, TOLAND E, et al. Bordetella bronchiseptica pagP is a Bvg-regulated lipid A palmitoyl transferase that is required for persistent colonization of the mouse respiratory tract[J]. Mol Microbiol, 2003, 48(3): 725-736. doi: 10.1046/j.1365-2958.2003.03484.x
|
[15] |
GUO L, LIM K B, PODUJE C M, et al. Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides[J]. Cell, 1998, 95: 189-198. doi: 10.1016/S0092-8674(00)81750-X
|
[16] |
PILIONE M R, PISHKO E J, PRESTON A, et al. pagP is required for resistance to antibody-mediated complement lysis during Bordetella bronchiseptica respiratory infection[J]. Infec Immun, 2004, 72: 2837-2842. doi: 10.1128/IAI.72.5.2837-2842.2004
|
[17] |
MUROI M, OHNISHI T, TANAMOTO K. MD-2, a novel accessory molecule is involved in species-specific actions of Salmonella lipid A[J]. Infec Immun, 2002, 70: 3546-3550. doi: 10.1128/IAI.70.7.3546-3550.2002
|
[18] |
TANAMOTO K, AZUMI S. Salmonella-type heptaacylated lipid A is inactive and acts as an antagonist of lipopolysaccharide action on human line cells[J]. J Immunol, 2000, 164: 3149-3156. doi: 10.4049/jimmunol.164.6.3149
|
[19] |
KAWASAKI K, ERNST R K, MILLER S I. 3-O-Deacylation of lipid A by PagL, a PhoP/PhoQ-regulated deacylase of Salmonella typhimurium, modulates signaling through toll-like receptor 4[J]. J Biol Chem, 2004, 279: 20044-20048. doi: 10.1074/jbc.M401275200
|
[20] |
BADER M W, SANOWAR S, DALEY M E, et al. Recognition of antimicrobial peptides by a bacterial sensor kinase[J]. Cell, 2005, 122: 461-472. doi: 10.1016/j.cell.2005.05.030
|
[21] |
MURATA T, TSENG W, GUINA T, et al. PhoP/Q-mediated regulation produces a more robust permeability barrier in the outer membrane of Salmonella enterica serovar typhimurium[J]. J Bacteriol, 2007, 189: 7213-7222. doi: 10.1128/JB.00973-07
|
[22] |
HITTLE L E, JONES J W, HAJJAR A M, et al. Bordetella parapertussis pagP mediates the addition of two palmitates to the lipopolysaccharide lipid A[J]. J Bacteriol, 2015, 197(3): 572-580. doi: 10.1128/JB.02236-14
|
[23] |
邵颖, 涂健, 汪雪雁, 等. APEC强毒力岛核心基因irp2、fyu A敲除对其致病性影响的研究[J]. 中国兽医学报, 2014, 34(4): 564-570.
|
[24] |
宋祥军, 李春晓, 祁克宗, 等. pagP基因对禽致病性大肠杆菌抗菌肽抗性和致病性的影响[J]. 微生物学通报, 2017, 44(12): 2888-2895.
|
[25] |
刘玉庆, 李璐璐, 骆延波, 等. EUCAST欧盟药敏试验标准[M]. 北京: 中国标准出版社, 2016.
|
[26] |
张筝, 赵俊杰, 李运喜, 等. 微量肉汤稀释法药敏试验的误差分析[J]. 中国抗生素杂志, 2016, 41(11): 858-864. doi: 10.3969/j.issn.1001-8689.2016.11.009
|
[27] |
VAARA M. Antibiotic-supersusceptible mutants of Escherichia coli and Salmonella typhimurium[J]. Antimicrob Agents Chemother, 1993, 37(11): 2255-2260. doi: 10.1128/AAC.37.11.2255
|
[28] |
VUORIO R, VAARA M. The lipid A biosynthesis mutation lpx A2 of Escherichia coli results in drastic antibiotic supersusceptibility[J]. Antimicrob Agents Chemother, 1992, 36(4): 826-829. doi: 10.1128/AAC.36.4.826
|
[29] |
VUORIO R, VAARA M. Mutants carrying conditionally lethal mutations in outer membrane genes omsA and firA (ssc) are phenotypically similar, and omsA is allelic to firA[J]. J Bacteriol, 1992, 174(22): 7090-7097. doi: 10.1128/jb.174.22.7090-7097.1992
|
[30] |
AMINI S, GOODARZI H, TAVAZOIE S. Genetic dissection of an exogenously induced biofilm in laboratory and clinical isolates of E. coli[J]. PLoS Pathog, 2009, 5(5): e1000432.
|
[31] |
GENEVAUX P, BAUDA P, DUBOW M S, et al. Identification of Tn10 insertions in the rfaG, rfaP, and galU genes involved in lipopolysaccharide core biosynthesis that affect Escherichia coli adhesion[J]. Arch Microbiol, 1999, 172(1): 1-8. doi: 10.1007/s002030050732
|
[32] |
马鹏. 埃希氏大肠杆菌脂多糖与其细胞外膜特性关系的研究[D]. 无锡: 江南大学, 2011.
|
1. |
陈学深,熊悦淞,程楠,马旭,齐龙. 自适应振动式稻田株间柔性机械除草性能试验. 吉林大学学报(工学版). 2024(02): 375-384 .
![]() | |
2. |
桑世飞,孙晓涵,姚国琴,马腾云,章怡静,郑阳阳,丰柳春,姬生栋. 抗ALS抑制剂类除草剂分子标记的开发及应用. 中国稻米. 2024(04): 17-23 .
![]() | |
3. |
陈海荣,陈应海,车年萍,周绍琴,史扬杰. 适用于条播水稻机械除草作业的对行纠偏控制系统设计与试验. 农业装备技术. 2024(03): 41-44 .
![]() | |
4. |
胡钧烜,牛坡,郑岩,刘恩泽. 基于Matlab手扶式除草机振动分析及优化. 农业与技术. 2024(13): 52-57 .
![]() | |
5. |
何淑洁,孔德就,李鹏. 新能源农机装备的发展现状与趋势. 广西农学报. 2024(02): 68-75 .
![]() | |
6. |
杨颖,杨宁,邹世彦,张秀明,王明丽. 自走乘坐式水田除草机设计与试验. 农机市场. 2024(09): 56-58 .
![]() | |
7. |
李世柱,王立军. 机械除草技术装备应用调研及发展建议. 农业工程. 2024(09): 19-22 .
![]() | |
8. |
王文明,陶冶. 丘陵山区小型茶园除草机设计与试验. 中国农机装备. 2024(11): 86-89 .
![]() | |
9. |
陈佶,刘伟华. 稻田机械除草技术装备研究与应用现状. 农业工程. 2024(11): 17-22 .
![]() | |
10. |
靳文停,王深研,钱海峰,李文龙,杨家豪,马浏轩. 基于LS-DYNA的水田株间除草爪切削土壤仿真分析. 农机化研究. 2023(03): 203-209 .
![]() | |
11. |
马永明. 水稻插秧机的复合作业探索. 农机使用与维修. 2023(02): 27-30 .
![]() | |
12. |
李立军,黄福平,王烨. 割草无人车Web端管控系统设计. 数字通信世界. 2023(03): 191-193 .
![]() | |
13. |
赵前程. 辽宁沈阳地区水稻机械化优质栽培技术. 特种经济动植物. 2023(06): 128-130 .
![]() | |
14. |
赵晋,黄赟,翁晓星,刘丹,戴津婧. 水稻田间除草装备现状与分析. 农业开发与装备. 2023(06): 33-35 .
![]() | |
15. |
卢天妹. 智能化技术在水稻生产全程机械化中的应用研究与发展趋势. 农业工程技术. 2023(17): 31-32 .
![]() | |
16. |
焦晋康,胡炼,陈高隆,涂团鹏,王志敏,臧英. 水田行间除草装置设计与试验. 农业工程学报. 2023(24): 11-22 .
![]() | |
17. |
靳文停,周成,马浏轩,葛宜元. 有机稻田株间目标识别及机械除草技术综述. 农机化研究. 2022(08): 9-14 .
![]() | |
18. |
周志强. 水田机械除草技术的研究现状与发展趋势. 南方农机. 2022(05): 16-18+28 .
![]() | |
19. |
金佳俊,谢东升,邵圣乐,奚小波. 往复摆动式水田机械除草机的设计. 农业装备技术. 2022(02): 14-16 .
![]() | |
20. |
方会敏,牛萌萌,薛新宇,姬长英. 玉米田间机械-化学协同除草的杂草防除效果. 农业工程学报. 2022(06): 44-51 .
![]() | |
21. |
陈学深,方根杜,熊悦淞,王宣霖,武涛. 基于稻田除草部件横向偏距视觉感知的对行控制系统设计与试验. 华南农业大学学报. 2022(05): 83-91 .
![]() | |
22. |
靳文停,葛宜元,樊文武,马浏轩,李文龙,杨荣敏. 倒V型稻田株间除草装置虚拟仿真及验证. 中国农机化学报. 2022(10): 72-77 .
![]() | |
23. |
唐伟,徐红星,董卉,杨永杰,郑承梅,陆永良. 我国水稻田除草剂同步用药现状与发展趋势. 杂草学报. 2022(02): 1-5 .
![]() | |
24. |
李姝然. 农田杂草机械化控制技术现状与特点. 农机使用与维修. 2022(11): 143-145 .
![]() | |
25. |
王金武,马骁驰,唐汉,王奇,吴亦鹏,张振江. 曲面轮齿斜置式稻田行间除草装置设计与试验. 农业机械学报. 2021(04): 91-100 .
![]() | |
26. |
王金峰,翁武雄,鞠金艳,陈鑫胜,王金武,王汉龙. 基于遥控转向的稻田行间除草机设计与试验. 农业机械学报. 2021(09): 97-105 .
![]() |