ZHOU Fei, ZENG Luping, YANG Xu, et al. Effects of rice-amaranth intercropping on rice yield,rhizosphere soil available nutrient and As accumulation[J]. Journal of South China Agricultural University, 2019, 40(6): 38-44. DOI: 10.7671/j.issn.1001-411X.201811037
    Citation: ZHOU Fei, ZENG Luping, YANG Xu, et al. Effects of rice-amaranth intercropping on rice yield,rhizosphere soil available nutrient and As accumulation[J]. Journal of South China Agricultural University, 2019, 40(6): 38-44. DOI: 10.7671/j.issn.1001-411X.201811037

    Effects of rice-amaranth intercropping on rice yield,rhizosphere soil available nutrient and As accumulation

    More Information
    • Received Date: November 24, 2018
    • Available Online: May 17, 2023
    • Objective 

      To explore the effects of rice-amaranth intercropping on rice yield, rhizosphere soil available nutrient and As accumulation in various parts of rice.

      Method 

      Through field plot experiment, four treatments including rice monocropping (control), rice-white amaranth intercropping, rice-grain amaranth intercropping and rice-red amaranth intercropping were setted to study the changes of rice yield and As accumulation, rhizosphere soil available nutrient and organic matter contents.

      Result 

      As contents of shoot, root, husk and brown rice during harvest time in four treatments all behaved as rice-white amaranth intercropping > rice-grain amaranth intercropping > rice-red amaranth intercropping > rice monocropping. Compared with the control, rice-white amaranth intercropping significantly increased As contents of shoot, root, husk and brown rice by 88.50%, 65.38%, 68.25%, 45.45% respectively. As extract amount from soil in rice-white amaranth intercropping treatment reached 5.44 mg·m −2, which was 1.67 times significantly higher than control. The biomass per rice plant in rice-white amaranth intercropping treatment was significantly higher than control, rice-red amaranth intercropping and rice-grain amaranth intercropping, and 63.79% higher than control. Compared with control, intercropping treatments significantly reduced rice yield per unit area. Rice-white amaranth intercropping had the highest yield per unit area, which was 59.15% of control. The available nutrient and organic matter contents in rice rhizosphere soil increased in different degrees compared with monoculture.

      Conclusion 

      Rice-amaranth intercropping reduces rice yield per unit area, and significantly increases As contents in shoot, root, husk and brown rice, and available nutrient and organic matter contents in rhizosphere soil. Rice-white amaranth intercropping is the optimal scheme, as it extract the most As in As contaminated soil, and the grown amaranth meets national safety standards.

    • [1]
      环境保护部国土资源部. 全国土壤污染状况调查公报[EB/OL]. [2014-04-17] http://www.mep.gov.cn/gkml/hbb/qt/201404/t20140417_270670.Htm.
      [2]
      刘小诗, 李莲芳, 曾希柏, 等. 典型农业土壤重金属的累积特征与源解析[J]. 核农学报, 2014, 28(7): 1288-1297. doi: 10.11869/j.issn.100-8551.2014.07.1288
      [3]
      钟松雄, 何宏飞, 陈志良, 等. 水淹条件下水稻土中砷的生物化学行为研究进展[J]. 土壤学报, 2018, 55(1): 1-17. doi: 10.11766/trxb201704250028
      [4]
      赵宏亮, 王麒, 孙羽, 等. 秸秆还田下灌溉方式对水稻产量及水分利用率的影响[J]. 核农学报, 2018, 32(5): 959-969. doi: 10.11869/j.issn.100-8551.2018.05.0959
      [5]
      LIU C P, LUO C L, GAO Y, et al. Arsenic contamination and potential health risk implications at an abandoned tungsten mine, southern China[J]. Environ Pollut, 2010, 158(3): 820-826. doi: 10.1016/j.envpol.2009.09.029
      [6]
      黄亚涛. 我国稻米中无机砷的污染分布研究及风险评估[D]. 北京: 中国农业科学院, 2014: 38-44.
      [7]
      胡拥军, 王海娟, 王宏镔, 等. 砷胁迫下不同砷富集能力植物内源生长素与抗氧化酶的关系[J]. 生态学报, 2015, 35(10): 3214-3224.
      [8]
      沈孝辉, 李仁英, 徐向华, 等. 土壤−水稻系统砷迁移累积的影响因素及调控措施[J]. 土壤通报, 2014, 45(5): 1273-1280.
      [9]
      吴川, 莫竞瑜, 薛生国, 等. 不同渗氧能力水稻品种对砷的耐性和积累[J]. 生态学报, 2014, 34(4): 807-813.
      [10]
      TALUKDER A S M H M, MEISNER C A, SARKAR M A R, et al. Effect of water management, arsenic and phosphorus levels on rice in a high-arsenic soil-water system: II: Arsenic uptake[J]. Ecotoxicol Environ Saf, 2012, 80: 145-151. doi: 10.1016/j.ecoenv.2012.02.020
      [11]
      ZHAO S T, LI H C, SHI Y H. Speciation analysis of antimony and arsenic in soil and remediation of antimony and arsenic in contaminated soils[J]. Adv Mater Res, 2015, 1088: 578-582. doi: 10.4028/www.scientific.net/AMR.1088.578
      [12]
      CHEN J, WANG S, ZHANG S, et al. Arsenic pollution and its treatment in Yangzonghai lake in China: In situ remediation[J]. Ecotoxicol Environ Saf, 2015, 122: 178-185. doi: 10.1016/j.ecoenv.2015.07.032
      [13]
      KLABER N S, BARKER A V. Accumulation of phosphorus and arsenic in two perennial grasses for soil remediation[J]. Commun Soil Sci Plant Anal, 2014, 45(6): 810-818. doi: 10.1080/00103624.2013.857681
      [14]
      申红玲, 何振艳, 麻密. 蜈蚣草砷超富集机制及其在砷污染修复中的应用[J]. 植物生理学报, 2014, 50(5): 591-598.
      [15]
      宋书巧, 周永章, 周兴, 等. 土壤砷污染特点与植物修复探讨[J]. 热带地理, 2004, 24(1): 6-9. doi: 10.3969/j.issn.1001-5221.2004.01.002
      [16]
      AMPIAH-BONNEY R J, TYSON J F, LANZA G R. Phytoextraction of arsenic from soil by Leersia oryzoides[J]. Int J Phytoremediation, 2007, 9(1/2/3): 31-40.
      [17]
      张少斌, 梁开明, 张殷, 等. 水稻与水合欢间作对作物群体产量、氮素吸收及土壤氮素的影响[J]. 生态环境学报, 2016, 25(11): 1856-1864.
      [18]
      梁开明, 傅玲, 章家恩, 等. 水稻/再力花单、间作系统中作物对镉胁迫的叶绿素荧光响应及镉积累特征[J]. 华南农业大学学报, 2014, 35(4): 35-41. doi: 10.7671/j.issn.1001-411X.2014.04.008
      [19]
      宁川川, 杨荣双, 蔡茂霞, 等. 水稻−雍菜间作系统中种间关系和水稻的硅、氮营养状况[J]. 应用生态学报, 2017, 28(2): 474-484.
      [20]
      吴华杰, 李隆, 张福锁. 水稻/小麦间作中种间相互作用对镉吸收的影响[J]. 中国农业科技导报, 2003, 5(5): 43-46. doi: 10.3969/j.issn.1008-0864.2003.05.010
      [21]
      张骞, 曾希柏, 苏世鸣, 等. 不同品种苋菜对砷的吸收能力及植株磷砷关系研究[J]. 农业环境科学学报, 2016, 35(10): 1888-1894. doi: 10.11654/jaes.2016-0687
      [22]
      中华人民共和国农业部. 酸性土壤铵态氮、有效磷、速效钾的测定联合浸提−比色法: NY/T 1849—2010[S]. 北京: 中国农业出版社, 2010.
      [23]
      中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. 食品中污染物限量: GB 2762—2017[S]. 北京: 中国标准出版社, 2017.
      [24]
      GOVE B, HUTCHINSON J J, YOUNG S D, et al. Uptake of metals by plants sharing a rhizosphere with the hyperaccumulator Thlaspi caerulescens[J]. Int J Phytoremediation, 2002, 4(4): 267-281. doi: 10.1080/15226510208500087
      [25]
      WHITING S N, DE SOUZA M P, TERRY N. Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens[J]. Environ Sci Technol, 2001, 35(15): 3144-3150. doi: 10.1021/es001938v
      [26]
      赵冰, 沈丽波, 程苗苗, 等. 麦季间作伴矿景天对不同土壤小麦−水稻生长及锌镉吸收性的影响[J]. 应用生态学报, 2011, 22(10): 2725-2731.
      [27]
      李凝玉, 李志安, 丁永祯, 等. 不同作物与玉米间作对玉米吸收积累镉的影响[J]. 应用生态学报, 2008, 19(6): 1369-1373.
      [28]
      张静静, 黄河, 吴海霞, 等. 不同土壤类型中水稻间作红蛋对镉累积的影响[J]. 西南农业学报, 2016, 29(12): 2871-2876.
      [29]
      刘维涛, 倪均成, 周启星, 等. 重金属富集植物生物质的处置技术研究进展[J]. 农业环境科学学报, 2014, 33(1): 15-27. doi: 10.11654/jaes.2014.01.002
      [30]
      章家恩, 高爱霞, 徐华勤, 等. 玉米/花生间作对土壤微生物和土壤养分状况的影响[J]. 应用生态学报, 2009, 20(7): 1597-1602.
      [31]
      曾露苹, 周飞, 陈玥如, 等. 木薯和花生间作对Cd吸收及根区速效养分的影响[J]. 环境科学研究, 2018, 31(2): 303-309.
      [32]
      IKERRA S T, MAGHEMBE J A, SMITHSON P C, et al. Soil nitrogen dynamics and relationships with maize yields in a gliricidia-maize intercrop in Malawi[J]. Plant Soil, 1999, 211(2): 155-164. doi: 10.1023/A:1004636501488
      [33]
      LI B, LI Y Y, WU H M, et al. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation[J]. P Natl Acad Sci USA, 2016, 113(23): 6496-6501. doi: 10.1073/pnas.1523580113
      [34]
      NORTON G J, ADOMAKO E E, DEACON C M, et al. Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species[J]. Environ Pollut, 2013, 177: 38-47. doi: 10.1016/j.envpol.2013.01.049
      [35]
      ROWLAND H A L, BOOTHMAN C, PANCOST R, et al. The role of indigenous microorganisms in the biodegradation of naturally occurring petroleum, the reduction of iron, and the mobilization of arsenite from west bengal aquifer sediments[J]. J Environ Qual, 2009, 38(4): 1598-1607. doi: 10.2134/jeq2008.0223
    • Cited by

      Periodical cited type(1)

      1. 廖冰,黄秀艳,陈科,傅雪琳,何平. 野生稻单片段代换系苗期耐旱性评价及QTL鉴定. 广东农业科学. 2024(03): 70-80 .

      Other cited types(3)

    Catalog

      Article views (1500) PDF downloads (1496) Cited by(4)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return