Citation: | MEI Yan, YANG Huaqiang, WU Zhenfang. Interference effect of CRISPR/Cas13b on porcine epidemic diarrhea virus[J]. Journal of South China Agricultural University, 2019, 40(6): 1-7. DOI: 10.7671/j.issn.1001-411X.201811022 |
Porcine epidemic diarrhea, caused by porcine epidemic diarrhea virus (PEDV), is a highly contagious viral disease and results in high mortality of pigs and huge lost of pig industry. The CRISPR/Cas13b system can mediate a highly efficient cleavage or editing to target RNA, thereby offering a novel strategy for interfering the infection of RNA viruses. We here tried to use the CRISPR/Cas13b system to cleave the PEDV RNA genome, in order to explore a novel strategy to inhibit PEDV infection.
We designed four CRISPR RNA (crRNA) sequences which respectively recognize four regions in the PEDV genome. The CRISPR/Cas13b targeting vectors were constructed and transfected into Vero cells. The transfected cells were infected by PEDV, and then we analyzed the viral load of PEDV in cultured cells.
The CRISPR/Cas13b system significantly inhibited PEDV propagation in Vero cells. In the viral immunofluorescence assay, the transfected cells with targeting vectors U6-crRNA3 and U6-crRNA4 had obviously fewer fluorophores compared with normal cells. The quantitative PCR results showed that CRISPR/Cas13b decreased PEDV load in cultured cells by above 50%.
The constructed CRISPR/Cas13b system can effectively interfere the propagation of PEDV. This study provides an alternative approach for effective RNA virus prevention and control, and creation of disease-resistant pig models.
[1] |
PENSAERT M B, DE BOUCKP. A new coronavirus-like particle associated with diarrhea in swine[J]. Arch Virol, 1978, 58(3): 243-247. doi: 10.1007/BF01317606
|
[2] |
WANG D L, FANG L R, XIAO S B. Porcine epidemic diarrhea in China[J]. Virus Res, 2016(226): 7-13.
|
[3] |
HUANG Y W, DICKERMAN A W, PINEYRO P, et al. Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States[J]. MBio, 2013, 4(5): e713-e737.
|
[4] |
HSU T, LIU H, CHIN C, et al. Detection, sequence analysis, and antibody prevalence of porcine deltacoronavirus in Taiwan[J]. Arch Virol, 2018, 163(11): 3113-3117. doi: 10.1007/s00705-018-3964-x
|
[5] |
SONG D, MOON H, KANG B, et al. Porcine epidemic diarrhea: A review of current epidemiology and available vaccines[J]. Clin Exp Vaccine Res, 2015, 4(2): 166-176. doi: 10.7774/cevr.2015.4.2.166
|
[6] |
陈申秒, 牛成明, 何福庆, 等. 猪流行性腹泻病毒研究进展及疫苗应用前景[J]. 中国畜牧兽医, 2014(3): 223-229.
|
[7] |
ABUDAYYEH O O, GOOTENBERG J S, KONERMANN S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J]. Science, 2016, 353(6299): aaf5573. doi: 10.1126/science.aaf5573
|
[8] |
MAKAROVA K S, WOLF Y I, ALKHNBASHI O S, et al. An updated evolutionary classification of CRISPR-Cas systems[J]. Nat Rev Microbiol, 2015, 13(11): 722-736. doi: 10.1038/nrmicro3569
|
[9] |
YAN W X, CHONG S, ZHANG H, et al. Cas13d is a compact RNA-targeting Type VI CRISPR effector positively modulated by a WYL-domain-containing accessory protein[J]. Mol Cell, 2018, 70(2): 327-339. doi: 10.1016/j.molcel.2018.02.028
|
[10] |
COX D B T, GOOTENBERG J S, ABUDAYYEH O O, et al. RNA editing with CRISPR-Cas13[J]. Science, 2017, 358(6366): 1019-1027. doi: 10.1126/science.aaq0180
|
[11] |
ABUDAYYEH O O, GOOTENBERG J S, ESSLETZBICHLER P, et al. RNA targeting with CRISPR-Cas13[J]. Nature, 2017, 550(7675): 280-284. doi: 10.1038/nature24049
|
[12] |
AMAN R, ALI Z, BUTT H, et al. RNA virus interference via CRISPR/Cas13a system in plants[J]. Genome Biol, 2018, 19(1): 1-9. doi: 10.1186/s13059-017-1381-1
|
[13] |
MILLER L C, CRAWFORD K K, LAGER K M, et al. Evaluation of two real-time polymerase chain reaction assays for porcine epidemic diarrhea virus (PEDV) to assess PEDV transmission in growing pigs[J]. J Vet Diagn Invest, 2016, 28(1): 20-29. doi: 10.1177/1040638715621949
|
[14] |
TIJSTERMAN M, PLASTERK R H. Dicers at RISC; The mechanism of RNAi[J]. Cell, 2004, 117(1): 1-3. doi: 10.1016/S0092-8674(04)00293-4
|
[15] |
肖婧, 张宗德. CRISPR技术: 一个新型基因编辑工具所引发的革命[J]. 华西医学, 2018, 33(8): 943-949.
|
[16] |
WOLTER F, PUCHTA H. The CRISPR/Cas revolution reaches the RNA world: Cas13, a new Swiss army knife for plant biologists[J]. Plant J, 2018, 94(5): 767-775. doi: 10.1111/tpj.13899
|
[17] |
MCBRIDE K M. Nuclear export signal located within the DNA-binding domain of the STAT1 transcription factor[J]. EMBO J, 2000, 19(22): 6196-6206. doi: 10.1093/emboj/19.22.6196
|
[18] |
GOOTENBERG J S, ABUDAYYEH O O, LEE J W, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2[J]. Science, 2017, 356(6336): 438-442. doi: 10.1126/science.aam9321
|
[19] |
TERNS M P. CRISPR-based technologies: Impact of RNA-targeting systems[J]. Mol Cell, 2018, 72(3): 404-412.
|
[20] |
LIU L, LI X, MA J, et al. The molecular architecture for RNA-guided RNA cleavage by Cas13a[J]. Cell, 2017, 170(4): 714-726. doi: 10.1016/j.cell.2017.06.050
|
[21] |
ALI Z, ABULFARAJ A, IDRIS A, et al. CRISPR/Cas9-mediated viral interference in plants[J]. Genome Biol, 2015, 16(1): 238-249. doi: 10.1186/s13059-015-0799-6
|
[22] |
SCHINDELE P, WOLTER F, PUCHTA H. Transforming plant biology and breeding with CRISPR/Cas9, Cas12 and Cas13[J]. FEBS Lett, 2018, 592(12): 1954-1967. doi: 10.1002/1873-3468.13073
|
[1] | LI Lei, ZHANG Yingnan, YANG Shubao, FENG Xiaogang, LIU Ying, DONG Hongyan, MA Jinping, LUAN Weimin. A study on development of lymphocytes in the chicken crop[J]. Journal of South China Agricultural University, 2014, 35(3): 24-29. DOI: 10.7671/j.issn.1001-411X.2014.03.005 |
[2] | CHEN Ke-wei, SHAO Tun, LIU Chun-yan, ZENG Ling. Effects of Host Age on the Reproduction and Development of Diachasmimorpha longicaudata[J]. Journal of South China Agricultural University, 2012, 33(4): 465-469. DOI: 10.7671/j.issn.1001-411X.2012.04.008 |
[3] | FENG Cheng-hao,WU Hong,ZHAO Sheng. The Developmental Anatomy of Two Kinds of Trichomes in Pogostemon cablin[J]. Journal of South China Agricultural University, 2006, 27(1): 88-91,116. DOI: 10.7671/j.issn.1001-411X.2006.01.023 |
[4] | LIN Li,REN Shun-xiang. Development and reproduction of B biotype Bemisia tabaci on variegated leafcrotones[J]. Journal of South China Agricultural University, 2005, 26(2): 39-42. DOI: 10.7671/j.issn.1001-411X.2005.02.010 |
[5] | Abstract. Effect of temperature on the development of Trichogramma ostriniae (Hymenoptera:Trichogrammatidae)[J]. Journal of South China Agricultural University, 2004, 25(4): 43-46. DOI: 10.7671/j.issn.1001-411X.2004.04.011 |
[6] | ZHONG Guo hong,LIANG Guang wen,MO Meng yi,ZENG Ling. Effects of Temperature and Humidity on Development of Experimental Cotton Leafworm Population[J]. Journal of South China Agricultural University, 2001, 22(3): 29-32. DOI: 10.7671/j.issn.1001-411X.2001.03.009 |
[7] | Wu Jiajiao ,Zhang Weiqiu ,Liang Guangwen. THE EFFECT OF TEMPERATURES ON THE DEVELOP-MENT AND FECUNDITY OF Thrips palmi Karny[J]. Journal of South China Agricultural University, 1995, (4): 14-19. |
[8] | Liao Jinling, Feng Zhixin. EFFECT OF OXAMYL ON THk DEVELOPMENT OF THE NEMATODE,Meloidogyne arenaria[J]. Journal of South China Agricultural University, 1995, (2): 60-61. |
[9] | Wang Xiaofengl, Fu Jiarui. CHARACTERISTICS OF DEVELOPMENT AND STORAGE OF MANGO SEEDS[J]. Journal of South China Agricultural University, 1994, (2): 26-31. |
[10] | Wang Xiongying Wu Pentuand He Xianlai. A STUDY ON THE TEMPERATURE-RANGE FOR CONSTANT DEVELOPMENT (TRCD) OF BIVOLTIN Bombyx mori[J]. Journal of South China Agricultural University, 1992, (2): 98-100. |