SU Han, ZHANG Fenglin, SONG Min, et al. Effects of calcium chloride supplementation in drinking water on fat deposition and intestinal flora in mice fed with high-fat diet[J]. Journal of South China Agricultural University, 2019, 40(3): 1-5. DOI: 10.7671/j.issn.1001-411X.201811019
    Citation: SU Han, ZHANG Fenglin, SONG Min, et al. Effects of calcium chloride supplementation in drinking water on fat deposition and intestinal flora in mice fed with high-fat diet[J]. Journal of South China Agricultural University, 2019, 40(3): 1-5. DOI: 10.7671/j.issn.1001-411X.201811019

    Effects of calcium chloride supplementation in drinking water on fat deposition and intestinal flora in mice fed with high-fat diet

    More Information
    • Received Date: November 10, 2018
    • Available Online: May 17, 2023
    • Objective 

      To investigate the effects of calcium chloride supplementation in drinking water on fat deposition and intestinal flora in mice fed high-fat diet, and provide a theoretical basis for improving carcass characteristics of animals and human health.

      Method 

      Twenty-seven 4-week-old C57BL male mice were divided into two groups including a high-fat diet (HFD) group and a group with HFD+calcium chloride supplementation in drinking water. The experiment was conducted for 13 weeks. The body weight of mouse was measured weekly. The body fat content of mouse was determined at the end of the experiment. After mice were sacrificed, the subcutaneous fat and epididymal fat of mice were collected and weighed. Mouse feces were collected during 10−12 weeks for high-throughput sequencing of 16S rRNA and the effects on intestinal flora were analyzed.

      Result 

      Calcium chloride supplementation in drinking water significantly reduced the body weight, body fat content, subcutaneous fat index and epididymal fat index of mice, and compared with HFD group these indexes were reduced by 12.85%, 32.69%, 26.65% and 18.60%, respectively. Meanwhile, calcium chloride supplementation in drinking water increased the community diversity and bacterial abundance in mouse fecal samples. At the phylum level, calcium chloride supplementation had no effect on the abundance of Bacteroidetes, Firmicutes, Proteobacteria, Deferribacteres, Actinobacteria and Tenericumes. At the class level, compared with the HFD group, calcium chloride supplementation in drinking water significantly reduced the relative abundance of Erysipelotrichia and Actinobacteria, whereas significantly increased the relative abundance of Clostridia.

      Conclusion 

      Calcium chloride supplementation in drinking water reduces the body weight and body fat content of mouse fed HFD, which might be associated with the increase in bacterial diversity and abundance of some specific bacteria in mouse feces.

    • [1]
      马衍旋. 肌内脂肪对猪肉品质的影响及肌内脂滴的成脂调控[D]. 杨凌:西北农林科技大学, 2018.
      [2]
      肖传禄. 提高生猪胴体品质和肉质特性研究进展综述[J]. 中国畜禽种业, 2006, 2(4): 40-43. doi: 10.3969/j.issn.1673-4556.2006.04.032
      [3]
      何若钢, 黄伟杰, 李秀宝. 不同日粮水平对新美系长白猪40~70 kg阶段生长性能及胴体品质的影响[J]. 饲料工业, 2009, 30(23): 14-17. doi: 10.3969/j.issn.1001-991X.2009.23.005
      [4]
      刘佳瑞, 郑瑞茂. 钙循环−米色脂肪产热新机制[J]. 生理科学进展, 2018, 49(1): 34.
      [5]
      罗楠, 秦锐. 膳食钙对高脂饮食大鼠肥胖形成的影响[J]. 江苏医药, 2007, 33(2): 162-164. doi: 10.3969/j.issn.0253-3685.2007.02.020
      [6]
      BROWN J M. Eating to boost gut microbial diversity[J]. Sci Transl Med, 2016, 8(369): 198. doi: 10.1126/scitranslmed.aal3696
      [7]
      袁坤, 林涅, 陈宏. 肠道菌群与肥胖发病机制的关系[J]. 医学综述, 2018, 24(21): 4166-4171. doi: 10.3969/j.issn.1006-2084.2018.21.002
      [8]
      GOMES J M, COSTA J A, ALFENAS R C. Could the beneficial effects of dietary calcium on obesity and diabetes control be mediated by changes in intestinal microbiota and integrity?[J]. Brit J Nutr, 2015, 114(11): 1756-1765. doi: 10.1017/S0007114515003608
      [9]
      ROSENBLUM J L, CASTRO V M, MOORE C E, et al. Calcium and vitamin D supplementation is associated with decreased abdominal visceral adipose tissue in overweight and obese adults[J]. Am J Clin Nutr, 2012, 95(1): 101-108. doi: 10.3945/ajcn.111.019489
      [10]
      SUN C, WANG L, YAN J, et al. Calcium ameliorates obesity induced by high-fat diet and its potential correlation with p38 MAPK pathway[J]. Mol Biol Rep, 2012, 39(2): 1755-1763. doi: 10.1007/s11033-011-0916-x
      [11]
      LORENZEN J K, MOLGAARD C, MICHAELSEN K F, et al. Calcium supplementation for 1 y does not reduce body weight or fat mass in young girls[J]. Am J Clin Nutr, 2006, 83(1): 18-23. doi: 10.1093/ajcn/83.1.18
      [12]
      徐姝迪, 张克远, 王忠, 等. 高钙饲料喂养初断乳大鼠对成年期高脂形成肥胖的影响[J]. 营养学报, 2013, 35(2): 154-157.
      [13]
      DUNCAN S H, LOBLEY G E, HOLTROP G, et al. Human colonic microbiota associated with diet, obesity and weight loss[J]. Int J Obesity, 2008, 32(11): 1720-1724. doi: 10.1038/ijo.2008.155
      [14]
      LEY R E, TURNBAUGH P J, KLEIN S, et al. Microbial ecology: Human gut microbes associated with obesity[J]. Nature, 2006, 444(7122): 1022-1023. doi: 10.1038/4441022a
      [15]
      XIAO L, SONNE S B, FENG Q, et al. High-fat feeding rather than obesity drives taxonomical and functional changes in the gut microbiota in mice[J]. Microbiome, 2017, 5: 43. doi: 10.1186/s40168-017-0258-6.
      [16]
      王洋, 周礼红. 肥胖人群肠道菌群多样性研究[J]. 贵州大学学报(自然科学版), 2018, 35(4): 47-53.
      [17]
      刘伟伟, 严敏, 周丽萍. 肥胖与肠道菌群的相关性[J]. 生命的化学, 2009, 29(6): 928-932.
      [18]
      NADEEM ASLAM M, BASSIS C M, ZHANG L, et al. Calcium reduces liver injury in mice on a high-fat diet: Alterations in microbial and bile acid profiles[J]. PLoS One, 2016, 11(11): e0166178. doi: 10.1371/journal.pone.0166178.eCollection2016
      [19]
      张柳, 牛尚梅, 马慧娟. 胆汁酸与代谢综合征的研究进展[J]. 医学综述, 2016, 22(5): 964-967. doi: 10.3969/j.issn.1006-2084.2016.05.037
      [20]
      SUN L J, MA L J, MA Y B, et al. Insights into the role of gut microbiota in obesity: Pathogenesis, mechanisms, and therapeutic perspectives[J]. Protein Cell, 2018, 9(5): 397-403. doi: 10.1007/s13238-018-0546-3
      [21]
      KASKA L, SLEDZINSKI T, CHOMICZEWSKA A, et al. Improved glucose metabolism following bariatric surgery is associated with increased circulating bile acid concentrations and remodeling of the gut microbiome[J]. World J Gastroentero, 2016, 22(39): 8698-8719. doi: 10.3748/wjg.v22.i39.8698
    • Cited by

      Periodical cited type(25)

      1. 胡兰梅,王丽娜,钱正敏,曹成全,魏福伦,唐艳龙. 生物农药印楝素对三叶虫萤幼虫的毒力测定. 湖北植保. 2025(01): 31-33 .
      2. 李俊杰,杨晓燕,唐慧琳,高俊恒,郭子坤,郭春阳,王冬寒,叶佳成,袁向群,李怡萍. 抑肽酶对防治梨小食心虫的两种植物源农药的增效作用. 植物保护学报. 2025(01): 105-112 .
      3. 薛育,侯则颖,王新谱. 苜蓿根瘤象成虫防控药剂筛选及助剂增效作用. 农业科学研究(中英文). 2025(01): 53-58 .
      4. 周陈杰,马闪闪,洪庆红,鲁吐浦拉,王肖庆,吴凯蝶,江文楠,张羽菲,王圣印. 13种杀虫剂对木橑尺蠖的室内毒力测定及田间防效. 甘肃农业大学学报. 2024(02): 171-178 .
      5. 常向前,吕亮,郑正安,王晶,邓颍骏,杨小林,王佐乾,张舒. 四种助剂对防治褐飞虱的植物源农药1%印楝素水分散粒剂毒力的影响. 昆虫学报. 2024(04): 490-497 .
      6. 赵秋兰,潘美佳,刘红芳. 紫堇乙醇提取物对草地贪夜蛾的杀虫活性及其成分分析. 南方农业. 2024(11): 48-51 .
      7. 舒本水,黄玉婷,余萱悦,刘翠婷,谢心怡,沈皓,林进添. 印楝素胁迫下草地贪夜蛾幼虫实时荧光定量PCR内参基因表达稳定性评价. 广东农业科学. 2024(08): 21-30 .
      8. 刘锦霞,李晶,张丹丹,李娜,付麟雲,丁品,吴孔明. 11种植物源杀虫活性成分对草地贪夜蛾的毒力测定. 植物保护. 2023(01): 351-356 .
      9. 刘琴,杨云福,刘现平,刘丽,成虹,李雪娇. 不同生物农药防治草地贪夜蛾试验效果. 云南农业. 2023(05): 65-67 .
      10. 冯磊,唐圣松,刘芳,戴长庚,邢济春,李鸿波. 7种生物杀虫剂对草地贪夜蛾和粘虫幼虫的毒力与防效. 环境昆虫学报. 2022(01): 35-43 .
      11. 黄阿国. 闽南地区草地贪夜蛾监测与田间药剂防治效果研究. 现代农业科技. 2022(06): 74-75+84 .
      12. 夏丽娟,李靖,梁竟宇,王学贵,朱新成,李彬,李涌泉. 印楝素对亚洲玉米螟的毒力与防效及对寄主作物高粱的安全性评价. 南京农业大学学报. 2022(03): 539-544 .
      13. 郭志敏,吕海翔,马康生,万虎,郭子平,李建洪. 7种生物源杀虫剂对草地贪夜蛾的室内毒力研究. 安徽农业科学. 2022(19): 139-143 .
      14. 雷琼,林鑫,巨亚绒. 6种农药对陕西省关中地区草地贪夜蛾的田间药效试验. 农业工程. 2022(08): 131-134 .
      15. 何文,张秀芬,黄珍玲,黄小娟,蒋婷,郭素云. 两种植物源杀虫剂对甘薯小象甲的室内防效. 农业研究与应用. 2022(06): 32-36 .
      16. Jing WAN,HUANG Cong,LI Chang-you,ZHOU Hong-xu,REN Yong-lin,LI Zai-yuan,XING Long-sheng,ZHANG Bin,QIAO Xi,LIU Bo,LIU Cong-hui,XI Yu,LIU Wan-xue,WANG Wen-kai,QIAN Wan-qiang,Simon MCKIRDY,WAN Fang-hao. Biology, invasion and management of the agricultural invader: Fall armyworm, Spodoptera frugiperda(Lepidoptera: Noctuidae). Journal of Integrative Agriculture. 2021(03): 646-663 .
      17. 太一梅,李志敏,朱晓明,刘萍,李貌,毕金华,朱斌. 生物农药对草地贪夜蛾的田间防治效果. 中国植保导刊. 2021(03): 66-68+77 .
      18. 汤云霞,桑芝萍,赵健,潘丹丹. 沿海地区7种生物农药防治玉米田草地贪夜蛾的药效试验简报. 上海农业科技. 2021(03): 111-112+114 .
      19. 范建,杜红莲,汉瑞林,杨继琼,马玉梅,周立为. 3种生物药剂对玉米草地贪夜蛾的防治效果. 云南农业科技. 2021(05): 34-35 .
      20. 陈秀琴,刘其全,田新湖,何玉仙,邱良妙,占志雄. 草地贪夜蛾生物防治研究进展. 福建农业学报. 2021(08): 981-988 .
      21. 邵雪花,赖多,匡石滋. FOXO基因对印楝素诱导sf9细胞凋亡的影响. 广东农业科学. 2021(11): 96-102 .
      22. 张海波,王风良,陈永明,于淦军,褚姝频,卢鹏,陈华,朱加萍,车晋英,张芳,周福才. 核型多角体病毒对玉米草地贪夜蛾的控制作用研究. 植物保护. 2020(02): 254-260 .
      23. 梁沛,谷少华,张雷,高希武. 我国草地贪夜蛾的生物学、生态学和防治研究概况与展望. 昆虫学报. 2020(05): 624-638 .
      24. 葛阳,孙嘉惠,王铁霖,石旺鹏,袁庆军,郭兰萍. 药源植物在草地贪夜蛾防控中的应用研究进展. 植物保护学报. 2020(04): 706-718 .
      25. 刘丁予,李昂. 3种生物农药对草地贪夜蛾的防效试验. 云南农业科技. 2020(S1): 11-13 .

      Other cited types(18)

    Catalog

      Article views (2149) PDF downloads (2045) Cited by(43)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return