Citation: | JIA Peilong, LI Biao, LI Minghui, et al. QTL analysis of low nitrogen tolerance in rice seedlings based on chromosome segment substitution lines[J]. Journal of South China Agricultural University, 2019, 40(4): 16-24. DOI: 10.7671/j.issn.1001-411X.201810046 |
To map the quantitative trait loci (QTL) associated with low nitrogen tolerance in rice (Oryza sativa), provide a basis for future fine mapping, cloning and functional characterization of related genes and offer theoretical references for breeding of low nitrogen tolerant rice.
A set of chromosomal segment substitution lines which was constructed by crossing Koshihikari (recurrent parent) and Nona Bokra (donor parent) were used as test materials. Low nitrogen stress treatment was applied at rice seedling stage. The relative loss ratios of eight phenotypes including rice plant height, root length, root fresh weight, root dry weight, shoot fresh weight, shoot dry weight, total fresh weight and total dry weight were analyzed, and QTL mapping was performed.
Two loci related to low nitrogen tolerance of rice were successfully mapped. These two QTLs were qRL1-1 and qRFW2-1 which were related to root length and root fresh weight respectively under low nitrogen stress. qRL1-1 was closed to the M1-29 marker on chromosome 1 with a LOD score of 2.89 and explained about 11.23% of total phenotypic variance. qRFW2-1 was closed to the M2-225 marker on chromosome 2 with a LOD score of 2.53 and explained about 9.90% of total phenotypic variance. No loci was found for other six phenotypic indexes.
QTLs related to root length and root fresh weight under low nitrogen stress are mapped, which lays the foundation for further genetic fine mapping and cloning of the underlying genes.
[1] |
许学宏, 王红慧. 肥料对农产品品质的影响综述[J]. 磷肥与复肥, 2003(4): 66-68. doi: 10.3969/j.issn.1007-6220.2003.04.026
|
[2] |
顾骏飞, 周振翔, 李志康, 等. 水稻低叶绿素含量突变对光合作用及产量的影响[J]. 作物学报, 2016, 42(4): 551-560.
|
[3] |
BACON P E. Nitrogen fertilization in the environment[J]. Biol Rev, 1995, 32(3): 296-348.
|
[4] |
邓若磊. 水稻铵转运蛋白基因OsAMT1.4和OsAMT5的克隆、表达和遗传转化[D]. 保定: 河北农业大学, 2007.
|
[5] |
SUN H, QIAN Q, WU K, et al. Heterotrimeric G proteins regulate nitrogen-use efficiency in rice[J]. Nat Genet, 2014, 46(6): 652-657. doi: 10.1038/ng.2958
|
[6] |
YANAGISAWA S, AKIYAMA A, KISAKA H, et al. Metabolic engineering with Dof1 transcription factor in plants: Improved nitrogen assimilation and growth under low-nitrogen conditions[J]. P Natl Acad Sci USA, 2004, 101(20): 7833-7838. doi: 10.1073/pnas.0402267101
|
[7] |
SHAN Y H, WANG Y L, PAN X B. Mapping of QTLs for nitrogen use efficiency and related traits in rice (Oryza sativa L.)[J]. Agr Sci China, 2005, 4(10): 721-727.
|
[8] |
王彦荣, 代贵金, 大杉立, 等. 水稻苗期氮素吸收及其相关性状的QTL分析[J]. 中国水稻科学, 2010, 24(5): 463-468. doi: 10.3969/j.issn.1001-7216.2010.05.003
|
[9] |
方萍, 陶勤南, 吴平. 水稻吸氮能力与氮素利用率的QTLs及其基因效应分析[J]. 植物营养与肥料学报, 2001(2): 159-165. doi: 10.3321/j.issn:1008-505X.2001.02.007
|
[10] |
YOSHIDA S, FORNO D A, COCK J H, et al. Laboratory manual for physiological studies of rice[M]. 2nd ed. Los Banos: IRRI, 1972: 57-63.
|
[11] |
WANG J K, WAN X Y, CROSSA J, et al. QTL mapping of grain length in rice (Oryza sativa L.) using chromosome segment substitution lines[J]. Genet Res, 2006, 88(2): 93-104. doi: 10.1017/S0016672306008408
|
[12] |
MCCOUCH S R, CHO Y G, YANO M, et al. Report on QTL nomenclature[J]. Rice Genet Newsl, 1997, 14: 11-13.
|
[13] |
王玉雯, 郭九信, 孔亚丽, 等. 氮肥优化管理协同实现水稻高产和氮肥高效[J]. 植物营养与肥料学报, 2016, 22(5): 1157-1166.
|
[14] |
CHOUDHURY A, KENNEDY I R. Nitrogen fertilizer losses from rice soils and control of environmental pollution problems[J]. Commun Soil Sci Plant, 2005, 36(11/12): 1625-1639.
|
[15] |
阮成江, 何祯祥, 钦佩. 我国农作物QTL定位研究的现状和进展[J]. 植物学通报, 2003(1): 10-22. doi: 10.3969/j.issn.1674-3466.2003.01.002
|
[16] |
吕海霞, 周广生, 丁泽红, 等. 水稻染色体片段代换系对氮反应的QTL分析[J]. 分子植物育种, 2010, 8(6): 1074-1081. doi: 10.3969/mpb.008.001074
|
[17] |
GEIOFF G C. Intact-plant screening for tolerance of nutrient deficiency stress[J]. Plant Soil, 1987, 99(1): 3-16. doi: 10.1007/BF02370149
|
[18] |
梁永书, 周军杰, 南文斌, 等. 水稻根系研究进展[J]. 植物学报, 2016, 51(1): 98-106.
|
[19] |
LIU K, HE A, YE C, et al. Root morphological traits and spatial distribution under different nitrogen treatments and their relationship with grain yield in super hybrid rice[J]. Sci Rep, 2018, 8(1): 131-139. doi: 10.1038/s41598-017-18576-4
|
[20] |
赵春芳, 赵凌, 张亚东, 等. 水稻苗期耐低氮相关性状的QTL定位[J]. 华北农学报, 2015, 30(6): 1-7.
|
[21] |
FENG Y, CAO L Y, WU W M, et al. Mapping QTLs for nitrogen-deficiency tolerance at seedling stage in rice (Oryza sativa L.)[J]. Plant Breeding, 2010, 129(6): 652-656. doi: 10.1111/j.1439-0523.2009.01728.x
|
[22] |
CHO Y I, JIANG W, CHIN J H, et al. Identification of QTLs associated with physiological nitrogen use efficiency in rice[J]. Mol Cells, 2007, 23(1): 72-79.
|
1. |
欧英卓,赵晴,顾怀应,周宇阳,刘长华,孟丽君. 氯酸盐在水稻硝态氮研究中的应用现状. 作物杂志. 2024(04): 1-7 .
![]() | |
2. |
韦敏益,张月雄,马增凤,黄大辉,刘驰,秦媛媛,卢颖萍,鄢柳慧,吴子帅,周小龙,吴旭祥,秦钢. 基于高密度遗传图谱的水稻穗长QTL定位与分析. 华南农业大学学报. 2023(06): 889-895 .
![]() | |
3. |
秦娜,付森杰,朱灿灿,代书桃,宋迎辉,魏昕,王春义,叶珍言,李君霞. 谷子苗期耐低氮相关性状的QTL分析. 中国农业科学. 2023(20): 3931-3945 .
![]() | |
4. |
范文静,刘明,李铁鑫,吴德祥,赵鹏,靳容,张强强,张爱君,唐忠厚. 作物氮高效利用的分子生物学研究及在甘薯上的研究展望. 江苏师范大学学报(自然科学版). 2022(03): 30-34 .
![]() | |
5. |
章怡兰,林雪,吴仪,李梦佳,张晟婕,路梅,饶玉春,王跃星. 水稻根系遗传育种研究进展. 植物学报. 2020(03): 382-393 .
![]() | |
6. |
杨习武,高云,顾后文,缪军,谭文琛,瞿培,马玉巧,贾丁菡,周勇,梁国华. 基于染色体单片段代换系的水稻苗期氮利用相关QTL鉴定. 扬州大学学报(农业与生命科学版). 2020(05): 1-8 .
![]() |