HU Yikai, XU Yaowen, XUE Chunquan, et al. Studies on carbon storages of Sonneratia apetala forest vegetation and soil in Guangdong Province[J]. Journal of South China Agricultural University, 2019, 40(6): 95-103. DOI: 10.7671/j.issn.1001-411X.201810008
    Citation: HU Yikai, XU Yaowen, XUE Chunquan, et al. Studies on carbon storages of Sonneratia apetala forest vegetation and soil in Guangdong Province[J]. Journal of South China Agricultural University, 2019, 40(6): 95-103. DOI: 10.7671/j.issn.1001-411X.201810008

    Studies on carbon storages of Sonneratia apetala forest vegetation and soil in Guangdong Province

    More Information
    • Received Date: October 09, 2018
    • Available Online: May 17, 2023
    • Objective 

      To explore the carbon storage of Sonneratia apetala in Guangdong Province, provide basic data for carbon sequestration investigation and monitoring based on mangrove biomass in Guangdong Province, and provide experiences and methods for monitoring mangrove carbon sequestration in China.

      Method 

      S. apetala vegetation and 0−100 cm soil were taken as research objects to build biomass model that could be universally used in Guangdong Province, and compare carbon storage of vegetation and soil in ten regions.

      Result 

      The biomass model of S. apetala was W=0.033(D2H)1.002, and the determination coefficient was 0.952. The fitting effect of the model was good. Total area of S. apetala forest in Guangdong Province was 1 724.12 hm2, total carbon storage was 536 801.09 t, vegetation carbon density was 50.81 t·hm−2, soil carbon density was 260.54 t·hm−2 and total carbon density was 311.35 t·hm−2. Vegetation carbon density was 16.32% of total carbon density, and soil carbon density was 83.68% of total carbon density. Total carbon reserves of S. apetala forest in ten regions were performed in the order of Shenzhen 2 790.65 t < Chaozhou 3 088.34 t < Huizhou 10 479.30 t < Jiangmen 13 800.58 t < Maoming 17 116.43 t < Zhanjiang 55 610.15 t < Zhongshan 58 562.90 t < Shantou 66 498.62 t < Guangzhou 134 938.18 t < Zhuhai 173 915.93 t.

      Conclusion 

      Carbon storage of S. apetala in Guangdong Province is mainly concentrated in soil layer. Soil carbon storage and vegetation carbon storage of S. apetala are obviously different in different regions.

    • [1]
      韩维栋, 高秀梅. 无瓣海桑人工林的生物量与能量研究(英文)[J]. 广西科学, 2004(3): 243-248. doi: 10.3969/j.issn.1005-9164.2004.03.022
      [2]
      吴天佑. 广东省湿地红树林的地位和作用的研究[J]. 粤东林业科技, 2005(1): 35-41.
      [3]
      何克军, 林寿明, 林中大. 广东红树林资源调查及其分析[J]. 广东林业科技, 2006(2): 89-93. doi: 10.3969/j.issn.1006-4427.2006.02.022
      [4]
      杜欢, 杨琼, 黎双飞, 等. 无瓣海桑和秋茄人工林下土壤微生物群落研究[J]. 林业与环境科学, 2017, 33(3): 1-7. doi: 10.3969/j.issn.1006-4427.2017.03.001
      [5]
      唐以杰, 安东, 方展强, 等. 珠海夹洲岛无瓣海桑与秋茄群落对重金属吸附能力的比较研究[J]. 生态科学, 2015, 34(3): 13-19.
      [6]
      刘莉娜, 胡长云, 李凤兰, 等. 无瓣海桑群落特征研究[J]. 沈阳农业大学学报, 2016, 47(1): 41-48.
      [7]
      CHEN L Z, ZENG X Q, TAM N F Y, et al. Comparing carbon sequestration and stand structure of monoculture and mixed mangrove plantations of Sonneratia caseolaris and S. apetala in Southern China[J]. Forest Ecol Manage, 2012, 284: 222-229. doi: 10.1016/j.foreco.2012.06.058
      [8]
      唐以杰, 方展强, 钟燕婷, 等. 不同生态恢复阶段无瓣海桑人工林湿地中大型底栖动物群落的演替[J]. 生态学报, 2012, 32(10): 3160-3169.
      [9]
      张弛, 王树功, 郑耀辉, 等. 生物扰动对红树林沉积物中AVS和重金属迁移转化的影响[J]. 生态学报, 2010, 30(11): 3037-3045.
      [10]
      杨琼, 谭凤仪, 吴苑玲, 等. 不同林龄海桑林和无瓣海桑林根际微生物特征[J]. 生态学杂志, 2014, 33(2): 296-302.
      [11]
      安东, 缪绅裕, 陈蔚, 等. 珠海淇澳岛无瓣海桑人工林更新幼苗种群特征[J]. 广州大学学报(自然科学版), 2015, 14(1): 50-55.
      [12]
      田野, 陈玉军, 侯琳, 等. 广东湛江无瓣海桑红树林消波效应初步研究[J]. 浙江农业科学, 2014(2): 210-213. doi: 10.3969/j.issn.0528-9017.2014.02.023
      [13]
      黄月琼, 吴小凤, 韩维栋, 等. 无瓣海桑人工林林分生物量的研究[J]. 江西农业大学学报(自然科学版), 2002(4): 533-536.
      [14]
      彭聪姣, 钱家炜, 郭旭东, 等. 深圳福田红树林植被碳储量和净初级生产力[J]. 应用生态学报, 2016, 27(7): 2059-2065.
      [15]
      朱可峰, 廖宝文, 章家恩. 广州市南沙红树植物无瓣海桑、木榄人工林生物量的研究[J]. 林业科学研究, 2011, 24(4): 531-536.
      [16]
      国家林业局. 第2次全国湿地资源调查结果[J]. 国土绿化, 2014(2): 6-7.
      [17]
      陈远生, 甘先华, 吴中亨. 广东省沿海红树林现状和发展[J]. 广东林业科技, 2001, 17(1): 20-26. doi: 10.3969/j.issn.1006-4427.2001.01.005
      [18]
      HOWARD J, HOYT S, ISENSEE K, et al. Coastal blue carbon: methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrasses[J]. J Am Hist, 2014, 14(4): 4-7.
      [19]
      曾伟生, 骆期邦, 贺东北. 兼容性立木生物量非线性模型研究[J]. 生态学杂志, 1999(4): 19-24. doi: 10.3321/j.issn:1000-4890.1999.04.005
      [20]
      PARRESOL B R. Assessing tree and stand biomass: A review with examples and critical comparisons[J]. Forest Sci, 1999, 45(4): 573-593.
      [21]
      PARRESOL B R. Additivity of nonlinear biomass equations[J]. Canad J Forest Res, 2001, 31(5): 865-878. doi: 10.1139/x00-202
      [22]
      ZABEK L M, PRESCOTT C E. Biomass equations and carbon content of aboveground leafless biomass of hybrid poplar in Coastal British Columbia[J]. Forest Ecol Manag, 2006, 223(1): 291-302.
      [23]
      DONATO D C, KAUFFMAN J B, MURDIYARSO D, et al. Mangroves among the most carbon-rich forests in the tropics[J]. Nat Geosci, 2011, 4(5): 293-297. doi: 10.1038/ngeo1123
      [24]
      周元满, 王平, 刘素青, 等. 无瓣海桑人工林树冠结构的分形分析[J]. 福建林学院学报, 2012, 32(3): 252-256. doi: 10.3969/j.issn.1001-389X.2012.03.011
      [25]
      ZAN Q, WANG Y, LIAO B, et al. Biomass and net productivity of Sonneratia apetala, S. caseolaris mangrove man-made forest[J]. J Wuhan Bot Res, 2001, 19(5): 391-396.
      [26]
      ZHU K F, LIAO B W, ZHANG J E. Studies on the biomass of mangrove plantation of Sonneratia apetala and Bruguiera gymnorrhiza in the wetland of Nansha in Guangzhou City[J]. Forest Res, 2011, 24(4): 531-536.
      [27]
      李云, 郑德璋, 陈焕雄, 等. 红树植物无瓣海桑引种的初步研究[J]. 林业科学研究, 1998(1): 42-47.
      [28]
      梁士楚, 王伯荪. 红树植物木榄种群植冠层结构的分形特征[J]. 海洋通报, 2002(5): 26-31. doi: 10.3969/j.issn.1001-6392.2002.05.004
      [29]
      温远光. 广西英罗港5种红树植物群落的生物量和生产力[J]. 广西科学, 1999(2): 63-68.
      [30]
      SAENGER P, SNEDAKER S C. Pantropical trends in mangrove above-ground biomass and annual litterfall[J]. Oecologia, 1993, 96(3): 293. doi: 10.1007/BF00317496
      [31]
      KOMIYAMA A, JIN E O, POUNGPARN S. Allometry biomass and productivity of mangrove forests: A review[J]. Aquat Bot, 2008, 89(2): 128-137. doi: 10.1016/j.aquabot.2007.12.006
      [32]
      ALONGI D M. Patterns of Mangrove wood and litter production within a beach ridge-fringing reef embayment, northern great barrier reef coast[J]. Estuar Coasts, 2011, 34(1): 32-44. doi: 10.1007/s12237-010-9289-y
      [33]
      KHAN M N I, SUWA R, HAGIHARA A. Biomass and aboveground net primary production in a subtropical mangrove stand of Kandelia obovata, (S. L.) Yong at Manko Wetland, Okinawa, Japan[J]. Wetlands Ecol Manag, 2009, 17(6): 585-599. doi: 10.1007/s11273-009-9136-8
      [34]
      朱耀军, 赵峰, 郭菊兰, 等. 湛江高桥红树林湿地有机碳分布及埋藏特征[J]. 生态学报, 2016, 36(23): 7841-7849.
      [35]
      辛琨, 颜葵, 李真, 等. 海南岛红树林湿地土壤有机碳分布规律及影响因素研究[J]. 土壤学报, 2014, 51(5): 1078-1086.
      [36]
      谈思泳. 华南红树林湿地表层土壤有机碳分布特征及其影响因子[D]. 南宁: 广西师范学院, 2017.
      [37]
      胡杰龙, 辛琨, 李真, 等. 海南东寨港红树林保护区碳储量及固碳功能价值评估[J]. 湿地科学, 2015, 13(3): 338-343.
      [38]
      LIU H, REN H, HUI D, et al. Carbon stocks and potential carbon storage in the mangrove forests of China[J]. J Environ Manag, 2014, 133: 86-93. doi: 10.1016/j.jenvman.2013.11.037
      [39]
      RAY R, GANGULY D, CHOWDHURY C, et al. Carbon sequestration and annual increase of carbon stock in a mangrove forest[J]. Atmosphe Environ, 2011, 45(28): 5016-5024. doi: 10.1016/j.atmosenv.2011.04.074
      [40]
      KAUFFMAN J B, HEIDER C, COLE T G, et al. Ecosystem carbon stocks of micronesian mangrove forests[J]. Wetlands, 2011, 31(2): 343-352. doi: 10.1007/s13157-011-0148-9
    • Cited by

      Periodical cited type(11)

      1. 李欣宇,叶尔江·拜克吐尔汉,王娟,张新娜,张春雨,赵秀海. 基于非线性混合效应模型的东北红松树高-胸径关系. 北京林业大学学报. 2025(03): 38-48 .
      2. 程雯,武晓昱,叶尔江·拜克吐尔汉,王娟,赵秀海,张春雨. 基于混合效应和分位数回归的温带针阔混交林树高与胸径关系研究. 北京林业大学学报. 2024(02): 28-39 .
      3. 王维芳,崔梦琦,邢凯然. 包含哑变量的大兴安岭天然白桦林碳密度模型. 森林工程. 2024(05): 74-81 .
      4. 吕乐乐,王文彬,董灵波. 基于哑变量和分位数回归的兴安落叶松更新幼树的树高-胸径模型. 应用生态学报. 2023(09): 2355-2362 .
      5. 夏洪涛,郭晓斌,张珍,田相林,郭福涛,孙帅超. 基于不同立地质量评价指标的杉木大径材林分树高-胸径模型. 中南林业科技大学学报. 2023(10): 80-88 .
      6. 郭卫红,郑庆荣,胡砚秋,陈晓江,李眉红. 山西五台山主要针叶树种树高—胸径曲线模型研究. 湖南林业科技. 2022(06): 72-77 .
      7. 王泳腾,黄治昊,王俊,张童,郎立华,孙国明,崔国发. 濒危植物黄檗的生存压力研究. 北京林业大学学报. 2021(01): 49-57 .
      8. 陈浩,罗扬. 马尾松树高-胸径非线性混合效应模型构建. 森林与环境学报. 2021(04): 439-448 .
      9. 张冬燕,王冬至,李晓,高雨珊,李天宇,陈静. 基于分位数回归的针阔混交林树高与胸径的关系. 浙江农林大学学报. 2020(03): 424-431 .
      10. 邓楠,马丰丰,宋庆安,周满,杨蕊,李典军,彭湃,田育新. 环境梯度对杉木公益纯林分布特征及生长的影响. 湖南林业科技. 2020(04): 8-15 .
      11. 韩辉,袁春良,张学利,宋鸽,安宇宁,孙晓辉. 基于林分生长量的沙地樟子松初植造林密度确定. 辽宁林业科技. 2020(06): 1-9+58 .

      Other cited types(5)

    Catalog

      Article views (1596) PDF downloads (1573) Cited by(16)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return