• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
HUANG Xiaoyu, LAN Yubin, YIN Xuanchun. Design and test of an agricultural variable nozzle based on magnetorheological fluid[J]. Journal of South China Agricultural University, 2019, 40(4): 92-99. DOI: 10.7671/j.issn.1001-411X.201809038
Citation: HUANG Xiaoyu, LAN Yubin, YIN Xuanchun. Design and test of an agricultural variable nozzle based on magnetorheological fluid[J]. Journal of South China Agricultural University, 2019, 40(4): 92-99. DOI: 10.7671/j.issn.1001-411X.201809038

Design and test of an agricultural variable nozzle based on magnetorheological fluid

More Information
  • Received Date: September 24, 2018
  • Available Online: May 17, 2023
  • Objective 

    To design an agricultural variable nozzle based on magnetorheological fluid, and realize variable spraying in agricultural protection area.

    Method 

    Mechanical structure of the variable nozzle was designed based on the theory of magnetorheological effect. Structural parameters were optimized through software simulation. Nozzle flow rate was measured under different coil voltage and volume of magnetorheological fluid injected in the nozzle cavity. Effect of coil voltage and volume of magnetorheological fluid injected in the nozzle on flow rate were analyzed.

    Result 

    When the pressure of the diaphragm pump kept at 0.3 MPa constantly, the nozzle flow rate decreased with the volume of magnetorheological fluid in the nozzle cavity increased from 0 to 2.5 mL. The reduction in flow rate was the least (14.29%) at the coil voltage of 24 V, while the reduction in flow rate was the largest (28.57%) at the coil voltage of 0 V. When the volume of magnetorheological fluid maintained at 1.5 mL and coil voltage increased from 0 to 28 V, the nozzle flow rate increased by 25.00%.

    Conclusion 

    The variable nozzle based on magnetorheological fluid can realize variable flow rate control by controlling the external magnetic field, and therefore the designed variable nozzle can be used in precise variable agricultural spraying.

  • [1]
    兰玉彬, 彭瑾, 金济. 农药喷雾粒径的研究现状与发展[J]. 华南农业大学学报, 2016, 37(6): 1-9.
    [2]
    FRITZ B K, HOFFMANN W C, CZACZYK Z, et al. Measurement and classification methods using the ASAE S572: 1 reference nozzles[J]. J Plant Prot Res, 2012, 52(4): 447-457. doi: 10.2478/v10045-012-0072-x
    [3]
    张东彦, 兰玉彬, 陈立平, 等. 中国农业航空施药技术研究进展与展望[J]. 农业机械学报, 2014, 45(10): 53-59. doi: 10.6041/j.issn.1000-1298.2014.10.009
    [4]
    HUANG Y, THOMSON S J, HOFFMANN W C, et al. Development and prospect of unmanned aerial vehicle technologies for agricultural production management[J]. Int J Agric Biol Eng, 2013, 6(3): 1-10.
    [5]
    LEBEAU F, ELBAHIR L, DESTAIN M F, et al. Improvement of spray deposit homogeneity using a PWM spray controller to compensate horizontal boom speed variations[J]. Comput Electron Agric, 2004, 43(2): 149-161. doi: 10.1016/j.compag.2004.01.001
    [6]
    BRUNO S. FAIÇAL, PESSIN G, FILHO G P R, et al. Fine-tuning of UAV control rules for spraying pesticides on crop fields[C]//IEEE international conference on tools with artificial intelligence. Cyprus: IEEE, 2014: 527-533.
    [7]
    王玲, 兰玉彬, 陈度, 等. 微型无人机低空变量喷药系统设计与雾滴沉积规律研究[J]. 农业机械学报, 2016, 47(1): 15-22.
    [8]
    王浩, 陈树人. 基于PWM的变量喷施控制系统设计及实验研究[J]. 农机化研究, 2012, 34(12): 159-161. doi: 10.3969/j.issn.1003-188X.2012.12.039
    [9]
    杨健健, 晏华, 代军, 等. 磁流变液材料的性能与应用综述[J]. 化工进展, 2017, 36(1): 247-260.
    [10]
    BERKOVSKY B M, MEDVEDEV V F, KRAKOV M S. Magnetic fluids: Engineering applications[M]. Oxford: Oxford University Press, 1993.
    [11]
    HUANG Y, HOFFMANN W, LAN Y, et al. Development of a low-volume sprayer for an unmanned autonomous helicopter[J]. J Agric Sci, 2014, 7(1): 148-153.
    [12]
    周晴晴, 薛新宇, 钱生越, 等. 航空喷嘴的使用现状及研究方向[J]. 中国农机化学报, 2016, 37(10): 234-237.
    [13]
    文晟, 兰玉彬, 张建桃, 等. 农用无人机超低容量旋流喷嘴的雾化特性分析与试验[J]. 农业工程学报, 2016, 32(20): 85-93. doi: 10.11975/j.issn.1002-6819.2016.20.011
    [14]
    中华人民共和国国家质量监督检验检疫总局. 农业灌溉设备非旋转式喷头技术要求和试验方法: GB/T 18687—2012[S]. 北京: 中国标准出版社, 2013.
    [15]
    金春玉. 空心圆锥雾化喷嘴喷雾实验与数值研究[D]. 上海: 上海交通大学, 2007.
    [16]
    王晓琦. 压力旋流喷嘴设计和实验研究[D]. 北京: 中国石油大学, 2007.
    [17]
    张海平. 轴流风速下压力旋流喷嘴外流场特性研究[D]. 北京: 中国石油大学, 2009.
    [18]
    杨春成. 磁性液体的磁性及磁粘性质研究[D]. 济南: 山东大学, 2016.
    [19]
    TRIPATHI D, BEG O A. A study of unsteady physiological magneto-fluid flow and heat transfer through a finite length channel by peristaltic pumping[J]. P I Mech Eng H, 2012, 226(8): 631-644. doi: 10.1177/0954411912449946
    [20]
    袁姝. 电磁场参数对磁流变液特性的影响及优化研究[D]. 上海: 上海工程技术大学, 2016.
    [21]
    杨小龙, 李德才, 杨文明, 等. 磁流体密封的磁路设计及磁场有限元分析[J]. 真空科学与技术学报, 2012, 32(10): 919-922. doi: 10.3969/j.issn.1672-7126.2012.10.12
    [22]
    周敏, 田大庆, 李小润, 等. 多层圆线圈在电磁计算中全空间磁感应强度B的分布[J]. 制造业自动化, 2016, 38(3): 18-19.
    [23]
    胡国良, 李海燕, 张海云. 圆环流磁流变阀压降性能分析与试验[J]. 农业机械学报, 2016, 47(3): 381-388.
    [24]
    卜胜利, 吴龙龙. 磁流体的Shliomis体积特性研究[J]. 上海理工大学学报, 2015, 37(5): 419-424.
    [25]
    沈阳变压器研究所. 变压器线圈制造[M]. 北京: 机械工业出版社, 1983.

Catalog

    Article views (1110) PDF downloads (1181) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return