Citation: | DOU Yiping, ZHAO Yan, PING Xiaokun, et al. Regulation mechanism of Mycobacterium bovis PtpA protein on NF-κB signaling pathway[J]. Journal of South China Agricultural University, 2019, 40(4): 1-7. DOI: 10.7671/j.issn.1001-411X.201809022 |
To investigate the effect of Mycobacterium bovis PtpA protein on NF-κB signaling pathway which is related to immune response, and reveal the role of PtpA protein in the body's response to immunity.
The PtpA gene eukaryotic expression vector FLAG-PtpA was transfected into HEK293T for SDS-PAGE analysis and Western blot detection. After activation of NF-κB signaling pathway, the effects of PtpA protein on NF-κB signaling pathway were investigated by dual luciferase assay and qPCR.
The eukaryotic expression vector FLAG-PtpA of PtpA gene was successfully constructed, transfected into HEK293T and analyzed by SDS-PAGE. The specific molecular band was visible with relative molecular mass of 22 000. Western blot results showed that the expression product specifically bound to the primary antibody, demonstrating that the protein was a PtpA protein. In the double luciferase assay, the ratios of the relative fluorescence intensities of firefly luciferase and Renilla luciferase in the test group and the control group were significantly different from 2 to 24 h after transfection (P<0.05). The relative fluorescence values of firefly luciferase and Renilla luciferase in the control group were 2.93 times higher than those in the experimental group 2 h after transfection, indicating that PtpA protein had a significant inhibitory effect on the early activation of NF-κB signaling pathway. qPCR results showed that the expression levels of IL-6, GM-CSF, BIRC-2 and BIRC-3 in the control group were 3.93, 3.42, 2.17 and 2.30 times respectively of those in the test group 2 h after transfection(P<0.01), and were 4.26, 3.93, 2.36 and 2.50 times respectively of those in the test group 4 h after transfection(P<0.01). These results indicated that PtpA protein had a significant inhibitory effect on NF-κB signaling pathway-associated cytokines (IL-6, GM-CSF, BIRC-2 and BIRC-3) in the early stage of immunization.
qPCR results are consistent with the results of dual luciferase assay, indicating that the effect of M. bovis PtpA on NF-κB signaling pathway mainly occurs in the early stage. This study provides a theoretical basis for the follow-up study of effective tuberculosis prevention and control drugs.
[1] |
SMITH N H, GORDON S V, DE LA RUA-DOMENECH R, et al. Ecotypes of the Mycobacterium tuberculosis complex[J]. J Theor Biol, 2006, 239(2): 220-225. doi: 10.1016/j.jtbi.2005.08.036
|
[2] |
DELAHAY R J, DE LEEUW A N, BARLOW A M, et al. The status of Mycobacterium bovisinfection in UK wild mammals: A review[J]. Vet J, 2002, 164(2): 90-105. doi: 10.1053/tvjl.2001.0667
|
[3] |
MACIEL A, LOIKO M R, BUENO T S, et al. Tuberculosis in Southern Brazilian wild boars (Sus scrofa): First epidemiological findings[J]. Transbound Emerg Dis, 2018, 65(2): 518-526. doi: 10.1111/tbed.2018.65.issue-2
|
[4] |
PHILLIPS C J C, FOSTER C R W, MORRIS P A, et al. The transmission of Mycobacterium bovis infection to cattle[J]. Res Vet Sci, 2003, 74(2): 1-15.
|
[5] |
PUCKEN V B, KNUBBEN-SCHWEIZER G, DOPFER D, et al. Evaluating diagnostic tests for bovine tuberculosis in the southern part of Germany: A latent class analysis[J]. PLoS One, 2017, 12(6): e0179847. doi: 10.1371/journal.pone.0179847
|
[6] |
DE KANTOR I N and RITACCO V. An update on bovine tuberculosis programmes in Latin American and Caribbean countries[J]. Vet Microbiol, 2006, 112(2/3/4): 111-118. doi: 10.1016/j.vetmic.2005.11.033
|
[7] |
STONE M J, BROWN T J and DROBNIEWSKI F A. Human Mycobacterium bovis infections in London and Southeast England[J]. J Clin Microbiol, 2012, 50(1): 164-165. doi: 10.1128/JCM.05692-11
|
[8] |
COWLEY S C, BABAKAIFF R and AV-GAY Y. Expression and localization of the Mycobacterium tuberculosis protein tyrosine phosphatase PtpA[J]. Res Microbiol, 2002, 153(4): 233-241. doi: 10.1016/S0923-2508(02)01309-8
|
[9] |
CHAO Y, XING Y, CHEN Y, et al. Structure and mechanism of the phosphotyrosyl phosphatase activator[J]. Mol Cell, 2006, 23(4): 535-546. doi: 10.1016/j.molcel.2006.07.027
|
[10] |
WANG J, LI B X, GE P P, et al. Mycobacterium tuberculosis suppresses innate immunity by coopting the host ubiquitin system[J]. Nat Immunol, 2015, 16(3): 237-245. doi: 10.1038/ni.3096
|
[11] |
PFAFFI M W. A new mathematical model for relative quantification in real-time RT-PCR[J]. Nucleic Acids Res, 2001, 29(9): e45. doi: 10.1093/nar/29.9.e45
|
[12] |
TONKS N K. Protein tyrosine phosphatases: From genes, to function, to disease[J]. Nat Rev Mol Cell Biol, 2006, 11(7): 833-846.
|
[13] |
FU Y and GALAN J E. The Salmonella typhimurium tyrosine phosphatase SptP is translocated into host cells and disrupts the actin cytoskeleton[J]. Mol Microbiol, 1998, 27(2): 359-368. doi: 10.1046/j.1365-2958.1998.00684.x
|
[14] |
GOEBEL-GOODY S M, WILSON-WALLIS E D, ROYSTON S, et al. Genetic manipulation of STEP reverses behavioral abnormalities in a fragile X syndrome mouse model[J]. Genes Brain Behav, 2012, 11(5): 586-600. doi: 10.1111/j.1601-183X.2012.00781.x
|
[15] |
SHI L, POTTS M and KENNELLY P J. The serine, threonine, and/or tyrosine-specific protein kinases and protein phosphatases of prokaryotic organisms: A family portrait[J]. FEMS Microbiol Rev, 1998, 22(4): 229-253. doi: 10.1111/j.1574-6976.1998.tb00369.x
|
[16] |
YONGFANG Z, KURUP P, JIAN X, et al. Genetic reduction of striatal-enriched tyrosine phosphatase (STEP) reverses cognitive and cellular deficits in an Alzheimer's disease mouse model[J]. Proc Natl Acad Sci USA, 2010, 107(44): 19014-19019. doi: 10.1073/pnas.1013543107
|
[17] |
WONG D, BACH H, SUN J, et al. Mycobacterium tuberculosis protein tyrosine phosphatase (PtpA) excludes host vacuolar-H+-ATPase to inhibit phagosome acidification[J]. Proc Natl Acad Sci USA, 2011, 108(48): 19371-19376. doi: 10.1073/pnas.1109201108
|
[18] |
WANG J, GE P, QIANG L, et al. The mycobacterial phosphatase PtpA regulates the expression of host genes and promotes cell proliferation[J]. Nat Commun, 2017, 8(1): 244. doi: 10.1038/s41467-017-00279-z
|
[19] |
孟露萍, 史梦婷, 包海洋, 等. 结核分枝杆菌Rv2626c蛋白对RAW264.7细胞凋亡的影响[J]. 中国畜牧兽医, 2016, 43(4): 892-898.
|
[20] |
VOLKMAN H E, POZOS T C, ZHENG J, et al. Tuberculous granuloma induction via interaction of a bacterial secreted protein with host epithelium[J]. Science, 2010, 327(5964): 466-469. doi: 10.1126/science.1179663
|
1. |
林子钧,尤德安,廖滔,张嘉谋,彭志锋,王红军. 基于GNSS+IMU的草方格固沙机自动巡航控制系统. 农机化研究. 2024(05): 37-44 .
![]() | |
2. |
何杰,魏正辉,胡炼,汪沛,黄培奎,丁帅奇. 基于两位置法与改进STEKF的农机航向角测量方法. 农业机械学报. 2024(12): 365-372 .
![]() | |
3. |
陈学深,熊悦淞,齐龙,王宣霖,程楠,梁俊,刘善健. 基于触感引导的小型水田行进底盘自动对行方法. 农业工程学报. 2022(21): 8-15 .
![]() | |
4. |
曹丽琴,王琪,黄堃,徐成杰,石云波,马宗敏,程林. 基于微机电系统传感器的杆塔倾斜度无线监测系统. 科学技术与工程. 2021(02): 616-622 .
![]() | |
5. |
张智刚,王明昌,毛振强,王辉,丁凡,李洪开,张天. 基于星基增强精密单点定位的农机自动导航系统开发与测试. 华南农业大学学报. 2021(06): 109-116 .
![]() | |
6. |
周俊,许建康,王耀羲,梁友斌. 基于GNSS的智能水田旋耕平地机研究. 农业机械学报. 2020(04): 38-43 .
![]() | |
7. |
苏静. 船舶航向实时控制算法优化. 舰船科学技术. 2020(12): 55-57 .
![]() |