Citation: | YU Ming, ZHENG Xinying, XUE Li. Vertical distribution of soil carbon and nutrient storages under a Michelia macclurei plantation[J]. Journal of South China Agricultural University, 2019, 40(4): 77-82. DOI: 10.7671/j.issn.1001-411X.201809004 |
Carbon and nutrient storages in different soil layers were studied in a 10-years-old Michelia macclurei plantation, in order to understand the soil carbon sequestration capacity and nutrient status of the M. macclurei plantation.
Five-point sampling method was used to collect soil samples from 0−20, 20−40, 40−60, 60−80 and 80−100 cm depth layers. Soil pH, contents of organic matter, total N, total P, total K, alkalized N, available P and rapidly available K were determined by routine methods. Carbon and nutrient storages were calculated.
Soil under M. macclurei plantation was acidic (pH3.54−3.79). Soil carbon content ofM. macclurei plantation decreased with the increase of soil depth. There was no significant difference in total P and K contents among different soil layers, while the contents of total N, alkalized N, available P and rapidly available K decreased with the increase of soil depth. Soil carbon storage of M. macclurei plantation in 0−100 cm depth layer was 259.26 t·hm−2. The storages of soil N, P and K in 0−100 cm depth layer were 21.50, 7.47 and 209.42 t·hm−2, respectively. Soil carbon, P and K storages of each layer increased with increasing soil depth.
Soil carbon storage of M. macclurei plantation is higher than the average level over all the nation, indicating that the soil in this stand has higher carbon sink potential and ability of improving the soil. There are more soil carbon, P and K storages in deeper layer than in soil surface, indicating poor carbon sequestration capacity and severe leaching erosion in surface soil. It is suggested that in the future management, attention should be paid to prevent soil erosion and enhance the carbon sequestration capacity of surface soil.
[1] |
薛立, 薛晔, 吴敏, 等. 不同坡位火力楠林土壤肥力变化特征[J]. 水土保持通报, 2011, 31(6): 51-54.
|
[2] |
薛立, 李燕, 屈明, 等. 火力楠、荷木和黎蒴林的土壤特性及涵养水源的研究[J]. 应用生态学报, 2005, 16(9): 1623-1627. doi: 10.3321/j.issn:1001-9332.2005.09.009
|
[3] |
谢腾芳, 薛立, 王相娥, 等. 火力楠和红苞木幼林的土壤肥力研究[J]. 水土保持通报, 2009, 29(6): 84-86.
|
[4] |
覃林, 马雪珍, 吴水荣, 等. 南亚热带典型乡土阔叶人工林与桉树人工林土壤微生物量氮及可溶性氮特征[J]. 应用与环境生物学报, 2017, 23(4): 678-684.
|
[5] |
董喜光, 张越, 薛立, 等. 火力楠林的土壤特性对外源性N和P的响应[J]. 中南林业科技大学学报, 2016, 36(9): 104-108.
|
[6] |
郑路, 蔡道雄, 卢立华, 等. 南亚热带不同树种人工林生态系统碳库特征[J]. 中南林业科技大学学报, 2014, 34(12): 110-116. doi: 10.3969/j.issn.1673-923X.2014.12.021
|
[7] |
侯晓娟, 李志, 崔诚, 等. 武功山芒根系垂直分布及其与土壤养分的关系[J]. 草业科学, 2017, 34(12): 2428-2436. doi: 10.11829/j.issn.1001-0629.2017-0135
|
[8] |
郑文辉, 林开敏, 徐昪, 等. 7种不同树种凋落叶对模拟酸雨缓冲性能的研究[J]. 水土保持学报, 2014, 28(3): 104-108.
|
[9] |
汪凤林, 张月全, 陈爱玲, 等. 不同配比的杉木、火力楠凋落物中土壤酶活性的变化及其对凋落物分解的影响[J]. 福建农林大学学报(自然科学版), 2017, 46(5): 576-583.
|
[10] |
徐华勤, 章家恩, 冯丽芳, 等. 广东省典型土壤类型和土地利用方式对土壤酶活性的影响[J]. 植物营养与肥料学报, 2010, 16(6): 1464-1471.
|
[11] |
鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000: 30-106.
|
[12] |
葛露露, 孟庆权, 林宇, 等. 滨海沙地不同树种人工林的碳储量及其分配格局[J]. 应用与环境生物学报, 2018, 24(4): 723-728.
|
[13] |
方怡然, 李洁, 薛立. 加勒比松林分改造对土壤化学性质和酶活性的影响[J]. 华南农业大学学报, 2018, 39(1): 91-97.
|
[14] |
杨丹, 项文化, 方晰, 等. 石栎−青冈常绿阔叶林土壤有机碳和全氮空间变异特征[J]. 生态学报, 2014, 34(12): 3452-3462.
|
[15] |
贺志龙, 张芸香, 郭跃东, 等. 不同密度华北落叶松林天然林土壤养分特征研究[J]. 生态环境学报, 2017, 26(1): 43-48.
|
[16] |
李婷, 邓强, 袁志友, 等. 黄土高原纬度梯度上的植物与土壤碳、氮、磷化学计量学特征[J]. 环境科学, 2015, 36(8): 2988-2996.
|
[17] |
桑巴叶, 朱玉伟, 陈启民, 等. 准噶尔盆地主要农田防护林的生物量及养分分布特征[J]. 西北林学院学报, 2016, 31(4): 147-152. doi: 10.3969/j.issn.1001-7461.2016.04.25
|
[18] |
文丽, 雷丕锋, 戴凌. 不同林龄樟树林土壤碳氮贮量及分布特征[J]. 中南林业科技大学学报, 2014, 34(6): 106-111. doi: 10.3969/j.issn.1673-923X.2014.06.021
|
[19] |
周永斌, 郭鑫炜, 魏亚伟, 等. 辽西北半干旱区典型人工林土壤C、N、P的垂直分布特征[J]. 沈阳农业大学学报, 2016, 47(4): 418-424.
|
[20] |
秦娟, 孔海燕, 刘华. 马尾松不同林型土壤C、N、P、K的化学计量特征[J]. 西北农林科技大学学报(自然科学版), 2016, 44(2): 68-76.
|
[21] |
WANG C, HAN G, JIA Y, et al. Insight into the temperature sensitivity of forest litter decomposition and soil enzymes in subtropical forest in China[J]. J Plant Ecol, 2012, 5(3): 279-286. doi: 10.1093/jpe/rtr013
|
[22] |
申家朋, 张文辉. 黄土丘陵区退耕还林地刺槐人工林碳储量及分配规律[J]. 生态学报, 2014, 34(10): 2746-2754.
|
[23] |
周玉荣, 于振良, 赵士洞. 我国主要森林生态系统碳贮量和碳平衡[J]. 植物生态学报, 2000, 24(5): 518-522. doi: 10.3321/j.issn:1005-264X.2000.05.002
|
[24] |
HE Y, QIN L, LI Z, et al. Carbon storage capacity of monoculture and mixed-species plantations in subtropical China[J]. Forest Ecol Manag, 2013, 295(5): 193-198.
|
[25] |
季波, 许浩, 何建龙, 等. 宁夏贺兰山青海云杉林土壤碳储量研究[J]. 生态科学, 2014, 33(5): 920-925.
|
[26] |
XIAO Y H, TONG F C, LIU S R, et al. Response of soil labile organic carbon fractions to forest conversions in subtropical China[J]. Trop Ecol, 2016, 57(4): 691-699.
|
[27] |
王棣, 耿增超, 佘雕, 等. 秦岭典型林分土壤有机碳储量及碳氮垂直分布[J]. 生态学报, 2015, 35(16): 5421-5429.
|
[28] |
RUMPEL C, KÖGEL-KNABNER I. Deep soil organic matter: A key but poorly understood component of terrestrial C cycle[J]. Plant Soil, 2011, 338(1/2): 143-158.
|
[29] |
HICKS P C, CASTANHA C, PORRAS R, et al. The whole-soil carbon flux in response to warming[J]. Science, 2017, 355(6332): 1420. doi: 10.1126/science.aal1319
|
[30] |
李斌, 方晰, 李岩, 等. 湖南省森林土壤有机碳密度及碳库储量动态[J]. 生态学报, 2015, 35(13): 4265-4278.
|
[31] |
杜宝红, 高翠萍, 哈达朝鲁. 不同放牧强度对锡林郭勒典型草原生产力及碳储量的影响[J]. 水土保持研究, 2018(1): 140-146, 152.
|
[32] |
MCNEILL A, UNKOVICH M. The nitrogen cycle in terrestrial ecosystems[M]. Berlin: Springer, 2007: 37-64.
|
[33] |
杨晓梅, 程积民, 孟蕾, 等. 子午岭不同林地土壤有机碳及养分储量特征分析[J]. 水土保持研究, 2010, 17(3): 130-134.
|
[34] |
胡亚林, 曾德慧, 姜涛. 科尔沁沙地退耕杨树人工林生态系统C、N、P储量和分配格局[J]. 生态学报, 2009, 29(8): 4206-4214. doi: 10.3321/j.issn:1000-0933.2009.08.023
|