Citation: | ZHAO Jialing, WEI Jinfan, GAO Lijun, et al. Effects of different casing materials on yield and physiological activity of Calocybe indica[J]. Journal of South China Agricultural University, 2019, 40(3): 53-60. DOI: 10.7671/j.issn.1001-411X.201808033 |
To investigate the effect of different casing materials on growth and development of Calocybe indica, and provide a theoretical basis for introduction and cultivation of Calocybe indica in China.
Different casing materials including loamy soil(CK), loamy soil+cow dung (volume ratio was 3∶1), spent mushroom compost, loamy soil+sand (volume ratio was 3∶1) were used as casing materials for cultivation of mushroom C. indica, and their effect on the yield and agronomic performance of C. indica sporophore were evaluated. Changes in soluble protein content and extracellular enzyme activity were measured.
Using loamy soil+cow dung as the casing material resulted in the highest yield of 2 078.50 g, the highest fruiting density and the shortest time for primordium initiation of around 7.67 days. When spent mushroom compost was used as the casing material, the yield and fruiting density of C. indica were ranked second, while the time of primordium initiation was the longest being 22.67 days. Compared with the control treatment, loamy soil+sand resulted in lower yield and fruiting density as well as worse fruiting quality. During different growth stages, in general soluble protein contents in different treatments showed a rising trend and largely increased during the second flush of C. indica (except for spent mushroom compost treatment). Soluble protein content in loamy soil+cow dung treatment was the highest during the whole growth process. Changes of extracellular enzyme activities were the most beneficial to C. indica growth under loamy soil+cow dung treatment.
Considering C. indica growth status and economic benefits, it is recommended to use loamy soil+cow dung as the casing material.
[1] |
AMIN R, KHAIR A, ALAM N, et al. Effect of different substrates and casing materials on the growth and yield of calocybe indica[J]. Mycobiology, 2010, 38(2): 97. doi: 10.4489/MYCO.2010.38.2.097
|
[2] |
SUBBIAH K A, BALAN V. A comprehensive review of tropical milky white mushroom (Calocybe indica P&C)[J]. Mycobiology, 2015, 43(3): 184-194. doi: 10.5941/MYCO.2015.43.3.184
|
[3] |
SENTHILNAMBI D, ESWARAN A, BALABASKAR P. Cultivation of Calocybe indica (P and C) during different months and influence of temperature and relative humidity on the yield of summer mushroom[J]. Afr J Agr Res, 2011, 6(3): 771-773.
|
[4] |
CHANDRAVADANA M V, VEKATESHWARLU G, BABU C S B, et al. Volatile flavour components of dry milky mushrooms (Calocybe indica)[J]. Flavour Frag J, 2010, 20(6): 715-717.
|
[5] |
CHAKRABORTY U, SIKDAR S R. Intergeneric protoplast fusion between Calocybe indica (milky mushroom) and peurotus florida aids in the qualitative and quantitative improvement of sporophore of the milky mushroom[J]. World J Microbiol Biotechnol, 2010, 26(2): 213-225. doi: 10.1007/s11274-009-0162-8
|
[6] |
PANI B K. Effect of spawning methods on sporophore production of Calocybe indica[J]. Biosci Discov, 2011, 2(2): 189-190.
|
[7] |
SATYANARAYANA B, RAMAN A V, DEHAIRS F, et al. Mangrove floristic and zonation patterns of Coringa, Kakinada Bay, East Coast of India[J]. Wetl Ecol Manag, 2002, 10(1): 25-37. doi: 10.1023/A:1014345403103
|
[8] |
方新新. 印度丽蘑生物学特性及适应性栽培研究[D]. 南宁: 广西大学, 2017.
|
[9] |
DOSHI A, SIDANA N, CHAKRAVARTI B P. Cultivation of summer mushroom Calocybe indica (P & C) in Rajasthan[J]. Mushroom Science, 1989, 12(4): 187-191.
|
[10] |
KASTHURI R, KARTHEESWARAN S, THANGAVEL K, et al. Studies on qualities of canned milky mushroom (Calocybe indica)[J]. J Mol Biol, 2007, 209(3): 489-491.
|
[11] |
PHAN C W, DAVID P, SABARATNAM V. Edible and medicinal mushrooms: Emerging brain food for the mitigation of neurodegenerative diseases[J]. J med Food, 2017, 20(1): 1. doi: 10.1089/jmf.2016.3740
|
[12] |
VIJAYKUMAR G, JOHN P, GANESH K, et al. Selection of different substrates for the cultivation of milky mushroom (Calocybe indica P & C)[J]. Indian J Tradit Know, 2014, 13(2): 434-436.
|
[13] |
SINGH M, SINGH A K, GAUTAM R K. Effect of casing and supplementation on yield of milky mushroom (Calocybe indica).[J]. Indian Phytopathol, 2007, 60(2): 191-193.
|
[14] |
赵嘉菱, 张猛, 韦锦范, 等. 不同添加物基料及覆土材料对印度丽蘑生长和产量的影响[J]. 南方农业学报, 2018, 49(8): 1581-1587. doi: 10.3969/j.issn.2095-1191.2018.08.17
|
[15] |
ALAM N, AMIN R, KHAIR A, et al. Influence of different supplements on the commercial cultivation of milky white mushroom[J]. Mycobiology, 2010, 38(3): 184-189. doi: 10.4489/MYCO.2010.38.3.184
|
[16] |
李传华, 刘培培, 赵春生, 等. 无需覆土的蘑菇属食用菌:中国美味蘑菇[J]. 菌物学报, 2018, 37(5): 595-605.
|
[17] |
李静, 赵洪, 马媛. 杏鲍菇覆土栽培及追肥对产量的影响[J]. 食用菌, 2012, 34(6): 37-38. doi: 10.3969/j.issn.1000-8357.2012.06.021
|
[18] |
NOBLE R, DOBROVIN-PENNINGTON A, EVERED C E, et al. Properties of peat-based casing soils and their influence on the water relations and growth of the mushroom (Agaricus bisporus)[J]. Plant Soil, 1998, 207(1): 1-13. doi: 10.1023/A:1004316922627
|
[19] |
EGER-HUMMEL G. Blue-light photomorphogenesis in mushrooms (basidiomycetes)[C]// SENGER H. The blue light syndrome, Berlin: Springer-Verlag, 1980.
|
[20] |
NAIR N G, HAYES W A. Some effects of casing soil amendments on mushroom cropping[J]. Aust J Agr Res, 1975, 26(1): 181-188. doi: 10.1071/AR9750181
|
[21] |
SMERDON M. Thoughts on casing[J]. Mushroom Journal, 1983, 12(4): 193-194.
|
[22] |
方白玉. 粤北野生灵芝与栽培灵芝同工酶及可溶性蛋白的研究[J]. 食用菌, 2013, 35(1): 9-11. doi: 10.3969/j.issn.1005-9873.2013.01.002
|
[23] |
STASZ T E, NIXON K, HARMAN G E, et al. Evaluation of phenetic species and phylogenetic relationships in the genus Trichoderma by cladistic analysis of isozyme polymorphism.[J]. Mycologia, 1989, 81(3): 391-403. doi: 10.1080/00275514.1989.12025762
|
[24] |
顾雅君, 王英, 刘建荣, 等. 与食用菌相关主要酶的研究与应用[J]. 中国食用菌, 2006, 7(1): 40-42. doi: 10.3969/j.issn.1003-8310.2006.01.016
|
[25] |
CARLSSON N, BORDE A, WÖLFEL S, et al. Quantification of protein concentration by the Bradford method in the presence of pharmaceutical polymers[J]. Anal Biochem, 2011, 411(1): 116-121. doi: 10.1016/j.ab.2010.12.026
|
[26] |
邵伟, 乐超银, 黄艺, 等. 蘑菇多酚氧化酶酶学特性初步研究[J]. 食用菌, 2007, 29(2): 5-6. doi: 10.3969/j.issn.1000-8357.2007.02.003
|
[27] |
张志良. 植物生理实验指导[M]. 2版. 北京: 高等教育出版社, 1990: 153-154.
|
[28] |
曾璐漫, 康信聪, 周荣辉, 等. 不同培养基成分对灵芝漆酶酶活的影响[J]. 食用菌, 2015, 37(3): 7-8. doi: 10.3969/j.issn.1000-8357.2015.03.003
|
[29] |
王玉万, 王云. 构菌栽培过程中对木质纤维素的降解和几种多糖分解酶活性的变化[J]. 微生物学通报, 1989, 16(3): 137-140.
|
[30] |
SHAMALA T R, SCREEKANTIAN K R. Production of cellulases and D-xylanase by some selected fungal isolases[J]. Enzyme Microb Technol, 1986, 8(3): 178-182. doi: 10.1016/0141-0229(86)90109-2
|
[31] |
吕春鹤, 孙婷婷, 张健, 等. 几种常见食用菌胞外酶活性测定方法的研究[J]. 中国林副特产, 2013(5): 93-96.
|
[32] |
孙彬, 张楠, 汪潮柱, 等. 覆土对双孢菇生长发育的影响[J]. 安徽农业科学, 2018, 46(4): 45-46.
|
[33] |
赵凤良, 王尚堃, 雷新梅. 3种不同覆土材料对双孢蘑菇栽培的影响[J]. 安徽农业科学, 2006, 34(18): 4555-4557. doi: 10.3969/j.issn.0517-6611.2006.18.027
|
[34] |
DAN LEVANON, 贺新生. 双孢蘑菇在不同覆土层上的营养利用差异[J]. 西南科技大学学报(哲学社会科学版), 1988(3): 69-73.
DAN LEVANON, 贺新生. 双孢蘑菇在不同覆土层上的营养利用差异[J]. 西南科技大学学报(哲学社会科学版), 1988(3): 69-73.
|
[35] |
毛慧玲, 李思光. 金针菇菌丝生长量与可溶性蛋白含量变化比较研究[J]. 食用菌学报, 1998, 5(4): 34-36.
|
[36] |
赵亚东. 不同培养料对秀珍菇生长发育、产量及胞外酶的影响[D]. 南京: 南京农业大学, 2011.
|
[37] |
俞苓, 刘民胜, 陈有容. 杏鲍菇液体培养中胞外酶活性变化[J]. 食用菌, 2003, 25(1): 7-8. doi: 10.3969/j.issn.1000-8357.2003.01.004
|
[38] |
韩增华, 张丕奇, 孔祥辉, 等. 黑木耳胞外酶活变化与栽培性状比较的研究[J]. 食用菌学报, 2007, 14(4): 41-46. doi: 10.3969/j.issn.1005-9873.2007.04.007
|
[39] |
陈建军, 杨清香, 王栋, 等. 不同生长阶段平菇漆酶、纤维素酶活性研究[J]. 西北农业学报, 2007, 16(1): 87-89. doi: 10.3969/j.issn.1004-1389.2007.01.019
|
[40] |
刘秀明, 郑素月, 图力古尔, 等. 温度胁迫对白灵侧耳菌丝保护酶活性的影响[J]. 食用菌学报, 2010, 17(2): 60-62. doi: 10.3969/j.issn.1005-9873.2010.02.012
|
[41] |
王伟科, 陆娜, 周祖法, 等. 8种胞外酶在香菇不同生长阶段的活性变化[J]. 浙江农业科学, 2014, 1(4): 501.
|
[42] |
郑海歌, 顾向红. 蘑菇中的多酚氧化酶及其同工酶[J]. 食用菌, 1990, 12(6): 17-18.
|
[43] |
潘迎捷, 陈明杰. 香菇菌丝生长中多酚氧化酶的动态变化[J]. 食用菌, 1990, 12(3): 4-6.
|
1. |
柯愉. 基于迁移学习的正温度系数热敏电阻表面损伤分类算法研究. 计算机与数字工程. 2024(06): 1703-1707 .
![]() | |
2. |
刘小刚,李荣梅,范诚,杨启良,赵璐. 基于语义分割的芒果表皮缺陷识别. 华南农业大学学报. 2023(01): 134-141 .
![]() | |
3. |
罗旭斌,刘波. 结合集成学习与迁移学习的标签比例学习方法. 计算机应用研究. 2023(05): 1422-1427 .
![]() | |
4. |
叶永雪,马鸿雁. 基于人体关键点与迁移学习的口罩佩戴检测研究. 计算机仿真. 2023(06): 234-239 .
![]() | |
5. |
周泽聿,王昊,张小琴,范涛,任秋彤. 基于Xception-TD的中华传统刺绣分类模型构建. 数据分析与知识发现. 2022(Z1): 338-347 .
![]() | |
6. |
王建冲,高军伟,张炳星,刘佳浩. 基于机器视觉的SOP芯片引脚缺陷检测系统. 工业仪表与自动化装置. 2022(05): 32-37 .
![]() |