• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
WANG Xiaolong, DENG Jizhong, HUANG Huasheng, et al. Identification of pests in cotton field based on hyperspectral data[J]. Journal of South China Agricultural University, 2019, 40(3): 97-103. DOI: 10.7671/j.issn.1001-411X.201807041
Citation: WANG Xiaolong, DENG Jizhong, HUANG Huasheng, et al. Identification of pests in cotton field based on hyperspectral data[J]. Journal of South China Agricultural University, 2019, 40(3): 97-103. DOI: 10.7671/j.issn.1001-411X.201807041

Identification of pests in cotton field based on hyperspectral data

More Information
  • Received Date: July 24, 2018
  • Available Online: May 17, 2023
  • Objective 

    To identify cotton pests quickly and accurately without destruction, and formulate pertinently a plant protection spraying plan.

    Method 

    Hyperspectral data of cotton leaves were collected and analyzed. FieldSpec®3 portable spectrum analyzer with a wavelength range of 350−2 500 nm was used to obtain hyperspectral data of cotton leaves including normal leaves and leaves infected by aphids and red spiders.K-nearest neighbor and SVM algorithm were used to distinguish above leaves. In order to further optimize pest identification of the model and improve the recognition accuracy, the principal component analysis method (PCA) was used for feature dimension reduction, and the grid search method was used for parameter optimization.

    Result 

    The models of pest identification were constructed by K-nearest neighbor algorithm and SVM algorithm, and recognition rates of two models were 86.08% and 89.29% respectively. Recognition rate increased after introducing PCA for feature dimension reduction and using grid search for parameter optimization. The recognition accuracies of K-nearest neighbor algorithm and SVM algorithm reached 88.24% and 92.16% respectively.

    Conclusion 

    Hyperspectral data can be used to distinguish aphid or red spider-infected leaves and normal cotton leaves. Using PCA dimensionality reduction and grid search method, the recognition rate can increase without obtaining specific characteristic bands. For identifying aphid- or red spider-infected leaves and normal leaves, SVM algorithm based on radial basis kernel function is better than K-nearest neighbor algorithm.

  • [1]
    雒珺瑜, 张帅, 任相亮, 等. 近十年我国棉花虫害研究进展[J]. 棉花学报, 2017, 29(增刊): 100-112.
    [2]
    崔金杰, 陈海燕, 赵新华, 等. 棉花害虫综合防治研究历程与展望[J]. 棉花学报, 2007, 19(5): 385-390. doi: 10.3969/j.issn.1002-7807.2007.05.009
    [3]
    张海娜, 钱玉源, 刘祎, 等. 蚜虫防治研究及在棉花上的应用[J]. 农学学报, 2015, 5(8): 36-39.
    [4]
    冯国民. 棉花红蜘蛛的发生与防治[J]. 北京农业, 2010(25): 41.
    [5]
    白敬, 徐友, 魏新华, 等. 基于光谱特性分析的冬油菜苗期田间杂草识别[J]. 农业工程学报, 2013, 20(29): 128-133.
    [6]
    孙俊, 张梅霞, 毛罕平, 等. 基于高光谱图像桑叶农药残留种类鉴别研究[J]. 农业机械学报, 2015, 46(6): 251-255.
    [7]
    黄双萍, 齐龙, 马旭, 等. 基于高光谱成像的水稻稻瘟病害程度分级方法[J]. 农业工程学报, 2015, 31(1): 212-217.
    [8]
    PIRON A, LEEMANS V, KLEYNEN O, et al. Selection of the most efficient wavelength bands for discriminating weeds from crop[J]. Comput Electron Agric, 2008, 62(2): 689-699.
    [9]
    田有文, 李天来, 张琳, 等. 高光谱图像技术诊断温室黄瓜病害的方法[J]. 农业工程学报, 2010, 26(5): 202-205.
    [10]
    刘波, 方俊永, 刘学, 等. 基于成像光谱技术的作物杂草识别研究[J]. 光谱学与光谱分析, 2010, 30(7): 1830-1833. doi: 10.3964/j.issn.1000-0593(2010)07-1830-04
    [11]
    邓巍, 张录达, 何雄奎, 等. 基于支持向量机的玉米苗期田间杂草光谱识别[J]. 光谱学与光谱分析, 2009, 29(7): 1906-1910. doi: 10.3964/j.issn.1000-0593(2009)07-1906-05
    [12]
    陈树人, 贾移新, 毛罕平, 等. 基于光谱分析技术的作物中杂草识别研究[J]. 光谱学与光谱分析, 2009, 29(2): 463-466. doi: 10.3964/j.issn.1000-0593(2009)02-0463-04
    [13]
    谢传奇, 王佳悦, 冯雷, 等. 应用高光谱图像光谱和纹理特征的番茄早疫病早期检测研究[J]. 光谱学与光谱分析, 2013, 33(6): 1603-1607. doi: 10.3964/j.issn.1000-0593(2013)06-1603-05
    [14]
    薛龙, 黎静, 刘木华, 等. 基于高光谱图像技术的水果表面农药残留检测试验研究[J]. 光学学报, 2008, 28(12): 2277-2280. doi: 10.3321/j.issn:0253-2239.2008.12.007
    [15]
    朱文静, 毛罕平, 周莹, 等. 基于高光谱图像技术的番茄叶片氮素营养诊断[J]. 江苏大学学报(自然科学版), 2014, 35(4): 290-294.
    [16]
    洪添胜, 乔军, NGADI M O, et al. 基于高光谱技术的雪花梨品质无损检测[J]. 农业工程学报, 2007, 23(2): 151-154. doi: 10.3321/j.issn:1002-6819.2007.02.030
    [17]
    刘雪梅, 章海亮. 基于DPLS和LS-SVM的梨品种近红外光谱识别[J]. 农业机械学报, 2012, 43(9): 160-164. doi: 10.6041/j.issn.1000-1298.2012.09.030
    [18]
    吴迪, 黄凌霞, 何勇, 等. 作物和杂草叶片的可见–近红外反射光谱特性[J]. 光学学报, 2008, 28(8): 1618-1622. doi: 10.3321/j.issn:0253-2239.2008.08.034
    [19]
    王立国, 赵亮, 刘丹凤, 等. SVM在高光谱图像处理中的应用综述[J]. 哈尔滨工程大学学报, 2018, 39(6): 973-980.
    [20]
    袁建清, 苏中滨, 贾银江, 等. 基于高光谱成像的寒地水稻叶瘟病与缺氮识别[J]. 农业工程学报, 2016, 32(13): 155-158. doi: 10.11975/j.issn.1002-6819.2016.13.022
    [21]
    JIMENEZL O, LANDGREBE D A. Supervised classification in high dimensional space: Gemetrical, statistical, and a symptotical properties of nultivariate data[J]. IEEE Trans Syst Man Cybean C: Appl Rev, 1998, 28(1): 39-54. doi: 10.1109/5326.661089
    [22]
    岳学军, 全东平, 洪添胜, 等. 柑橘叶片叶绿素含量高光谱无损检测模型[J]. 农业工程学报, 2015, 31(1): 294-300. doi: 10.3969/j.issn.1002-6819.2015.01.039
    [23]
    孙俊, 金夏明, 毛罕平, 等. 高光谱图像技术在掺假大米检测中的应用[J]. 农业工程学报, 2014, 30(21): 301-305. doi: 10.3969/j.issn.1002-6819.2014.21.036
    [24]
    祝志慧, 刘婷, 马美湖. 基于高光谱信息融合和相关向量机的种蛋无损检测[J]. 农业工程学报, 2015, 31(15): 285-290. doi: 10.11975/j.issn.1002-6819.2015.15.039
    [25]
    HARRINGTON P. 机器学习实战[M]. 李锐, 李鹏, 曲亚东, 等译. 北京: 人民邮电出版社, 2013: 15-110.
    [26]
    李航. 统计学习方法[M]. 北京:清华大学出版社, 2017: 95-133.
    [27]
    CHEN T, ZENG R, ZHANG L. Detection of stress in cotton (Gossypium hirsutum L.) caused by aphids using leaf level hyperspectral measurements[J]. Sensors, 2018, 18(9): 2798. doi: 10.3390/s18092798
    [28]
    牛鲁燕, 郑纪业, 张晓艳, 等. 基于成像高光谱的苹果叶片叶绿素含量估测模型研究[J]. 江西农业学报, 2018, 30(2): 100-104.
    [29]
    RAVINDER R, GIRIDHAR M. Spectral reflectance from the tomato crop canopy under controlled condition by using spectroradiometer[C]// LANE C, BAEAR S. NCWES. Hyderabad: BS Publications, 2017: 392-397.
    [30]
    梁守真, 施平, 马万栋, 等. 植被叶片光谱及红边特征与叶片生化组分关系的分析[J]. 中国生态农业学报, 2010, 18(4): 804-809.
    [31]
    孙林, 程丽娟. 植被叶片生化组分的光谱响应特征分析[J]. 光谱学与光谱分析, 2010, 30(11): 3031-3035. doi: 10.3964/j.issn.1000-0593(2010)11-3031-05
  • Cited by

    Periodical cited type(2)

    1. 周文灵,陈迪文,吴启华,方界群,敖俊华. 耕作措施对宿根甘蔗产量、碳排放及经济效益的影响. 中国生态农业学报(中英文). 2024(09): 1481-1491 .
    2. 凤晓岗,汪永诚,刘书雅,马横宇,王寅,董召荣,车钊. 有机肥施用量对燕麦–青贮玉米产量和N_2O排放的影响. 草业科学. 2024(11): 2675-2684 .

    Other cited types(4)

Catalog

    Article views (1568) PDF downloads (1416) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return