Citation: | XU Shan, LI Renqiang, ZHANG Jifu, et al. Effect of incubation on stabilization of lipase immobilized by epoxy resin[J]. Journal of South China Agricultural University, 2019, 40(3): 61-66. DOI: 10.7671/j.issn.1001-411X.201807037 |
To study the effect of glycine incubation on the stability of lipase immobilized by LXEP-120 epoxy resin.
Glycine solution was used to incubate lipase immobilized by epoxy resin for removing the residual epoxy groups. The incubation conditions were explored and optimized, and the enzymatic properties of the immobilized lipase before and after incubation were compared.
The optimal incubation conditions were 2.5 mol/L and pH 7.0 glycine solution incubating for 24 h at 25 ℃. Following incubation, the immobilized lipase still retained about 60% of the original activity after treatment at 80 ℃ for 6 h, while the unincubated immobilized lipase retained only about 45% of the original activity. The optimal reaction pH (8.0) and optimal reaction temperature (45 ℃) of the immobilized lipase after incubation were the same as those of the unincubated immobilized lipase, and the pH tolerance, operation stability, and storage stability were the same as those before incubation.
Removing residual epoxy groups on immobilized enzyme through incubation is one necessary technical step. Glycine incubation can greatly improve the thermal stability of the immobilized lipase with little influence on reaction pH, pH stability, operation stability and storage stability.
[1] |
朱珊珊, 邵佩霞, 王永华. LipozymeTL100L脂肪酶的固定化及其性质研究[J]. 食品工业科技, 2010, 31(5): 97-100.
|
[2] |
KIM H, CHOI N, OH S W, et al. Synthesis of alpha-linolenic acid-rich triacylglycerol using a newly prepared immobilized lipase[J]. Food Chem, 2017, 237: 654-658.
|
[3] |
FARIAS S, MAYER D A, DE OLIVEIRA D, et al. Free and Ca-alginate beads immobilized horseradish peroxidase for the removal of reactive dyes: An experimental and modeling study[J]. Appl Biochem Biotechnol, 2017, 182(4): 1290-1306. doi: 10.1007/s12010-017-2399-2
|
[4] |
VAZQUEZ-ORTEGA P G, ALCARAZ-FRUCTUOSO M T, ROJAS-CONTRERAS J A, et al. Stabilization of dimeric beta-glucosidase from Aspergillus niger via glutaraldehyde immobilization under different conditions[J]. Enzyme Microb Technol, 2018, 110: 38-45.
|
[5] |
AGHABABAIE M, BEHESHTI M, RAZMJOU A, et al. Covalent immobilization of Candida rugosa lipase on a novel functionalized Fe3O4@SiO2 dip-coated nanocomposite membrane[J]. Food Bioprod Process, 2016, 100: 351-360.
|
[6] |
刘文涛, 段洪东, 王兴建, 等. 环氧基固定化酶载体的研究进展[J]. 山东轻工业学院学报, 2012, 26(3): 40-44.
|
[7] |
顾恺, 邹树平, 王志才, 等. 环氧树脂固定化卤醇脱卤酶的研究[J]. 现代化工, 2016, 36(11): 69-74.
|
[8] |
SHELDON R A. Enzyme immobilization: The quest for optimum performance[J]. Adv Synth Catal, 2007, 349(8/9): 1289-1307.
|
[9] |
BLANCO R M, CALVETE J J, GUISAN J M. Immobilization-stabilization of enzymes : Variables that control the intensity of the trypsin (amine) agarose (aldehyde) multipoint attachment[J]. Enzyme Microb Technol, 1989, 11(6): 353-359. doi: 10.1016/0141-0229(89)90019-7
|
[10] |
TORRES P, BATISTA-VIERA F. Immobilized trienzymatic system with enhanced stabilization for the biotransformation of lactose[J]. Molecules, 2017, 22(2): 284. doi: 10.3390/molecules22020284
|
[11] |
MATEO C, ABIAN O, FERNANDEZ-LAFUENTE R, et al. Increase in conformational stability of enzymes immobilized on epoxy-activated supports by favoring additional multipoint covalent attachment[J]. Enzyme Microb Technol, 2000, 26(7): 509-515. doi: 10.1016/S0141-0229(99)00188-X
|
[12] |
MATEO C, GRAZU V, PESSELA B C C, et al. Advances in the design of new epoxy supports for enzyme immobilization-stabilization[J]. Biochem Society Trans, 2007, 35(6): 1593-1601. doi: 10.1042/BST0351593
|
[13] |
BARBOSA O, ORTIZ C, BERENGUER-MURCIA A, et al. Strategies for the one-step immobilization-purification of enzymes as industrial biocatalysts[J]. Biotechnol Adv, 2015, 33(5): 435-456. doi: 10.1016/j.biotechadv.2015.03.006
|
[14] |
GUISAN, JOSE M. Immobilization-stabilization of enzymes by multipoint covalent attachment on supports activated with epoxy groups[J]. Immobil Enzyme Cell, 2006, 22: 47-54.
|
[15] |
TORRES P, BATISTA-VIERA F. Immobilization of β-galactosidase from Bacillus circulans onto epoxy-activated acrylic supports[J]. J Mol Catal B: Enzym, 2012, 74(3/4): 230-235. doi: 10.1016/j.molcatb.2011.11.006
|
1. |
周文灵,陈迪文,吴启华,方界群,敖俊华. 耕作措施对宿根甘蔗产量、碳排放及经济效益的影响. 中国生态农业学报(中英文). 2024(09): 1481-1491 .
![]() | |
2. |
凤晓岗,汪永诚,刘书雅,马横宇,王寅,董召荣,车钊. 有机肥施用量对燕麦–青贮玉米产量和N_2O排放的影响. 草业科学. 2024(11): 2675-2684 .
![]() |