XU Shan, LI Renqiang, ZHANG Jifu, et al. Effect of incubation on stabilization of lipase immobilized by epoxy resin[J]. Journal of South China Agricultural University, 2019, 40(3): 61-66. DOI: 10.7671/j.issn.1001-411X.201807037
    Citation: XU Shan, LI Renqiang, ZHANG Jifu, et al. Effect of incubation on stabilization of lipase immobilized by epoxy resin[J]. Journal of South China Agricultural University, 2019, 40(3): 61-66. DOI: 10.7671/j.issn.1001-411X.201807037

    Effect of incubation on stabilization of lipase immobilized by epoxy resin

    More Information
    • Received Date: July 21, 2018
    • Available Online: May 17, 2023
    • Objective 

      To study the effect of glycine incubation on the stability of lipase immobilized by LXEP-120 epoxy resin.

      Method 

      Glycine solution was used to incubate lipase immobilized by epoxy resin for removing the residual epoxy groups. The incubation conditions were explored and optimized, and the enzymatic properties of the immobilized lipase before and after incubation were compared.

      Result 

      The optimal incubation conditions were 2.5 mol/L and pH 7.0 glycine solution incubating for 24 h at 25 ℃. Following incubation, the immobilized lipase still retained about 60% of the original activity after treatment at 80 ℃ for 6 h, while the unincubated immobilized lipase retained only about 45% of the original activity. The optimal reaction pH (8.0) and optimal reaction temperature (45 ℃) of the immobilized lipase after incubation were the same as those of the unincubated immobilized lipase, and the pH tolerance, operation stability, and storage stability were the same as those before incubation.

      Conclusion 

      Removing residual epoxy groups on immobilized enzyme through incubation is one necessary technical step. Glycine incubation can greatly improve the thermal stability of the immobilized lipase with little influence on reaction pH, pH stability, operation stability and storage stability.

    • [1]
      朱珊珊, 邵佩霞, 王永华. LipozymeTL100L脂肪酶的固定化及其性质研究[J]. 食品工业科技, 2010, 31(5): 97-100.
      [2]
      KIM H, CHOI N, OH S W, et al. Synthesis of alpha-linolenic acid-rich triacylglycerol using a newly prepared immobilized lipase[J]. Food Chem, 2017, 237: 654-658.
      [3]
      FARIAS S, MAYER D A, DE OLIVEIRA D, et al. Free and Ca-alginate beads immobilized horseradish peroxidase for the removal of reactive dyes: An experimental and modeling study[J]. Appl Biochem Biotechnol, 2017, 182(4): 1290-1306. doi: 10.1007/s12010-017-2399-2
      [4]
      VAZQUEZ-ORTEGA P G, ALCARAZ-FRUCTUOSO M T, ROJAS-CONTRERAS J A, et al. Stabilization of dimeric beta-glucosidase from Aspergillus niger via glutaraldehyde immobilization under different conditions[J]. Enzyme Microb Technol, 2018, 110: 38-45.
      [5]
      AGHABABAIE M, BEHESHTI M, RAZMJOU A, et al. Covalent immobilization of Candida rugosa lipase on a novel functionalized Fe3O4@SiO2 dip-coated nanocomposite membrane[J]. Food Bioprod Process, 2016, 100: 351-360.
      [6]
      刘文涛, 段洪东, 王兴建, 等. 环氧基固定化酶载体的研究进展[J]. 山东轻工业学院学报, 2012, 26(3): 40-44.
      [7]
      顾恺, 邹树平, 王志才, 等. 环氧树脂固定化卤醇脱卤酶的研究[J]. 现代化工, 2016, 36(11): 69-74.
      [8]
      SHELDON R A. Enzyme immobilization: The quest for optimum performance[J]. Adv Synth Catal, 2007, 349(8/9): 1289-1307.
      [9]
      BLANCO R M, CALVETE J J, GUISAN J M. Immobilization-stabilization of enzymes : Variables that control the intensity of the trypsin (amine) agarose (aldehyde) multipoint attachment[J]. Enzyme Microb Technol, 1989, 11(6): 353-359. doi: 10.1016/0141-0229(89)90019-7
      [10]
      TORRES P, BATISTA-VIERA F. Immobilized trienzymatic system with enhanced stabilization for the biotransformation of lactose[J]. Molecules, 2017, 22(2): 284. doi: 10.3390/molecules22020284
      [11]
      MATEO C, ABIAN O, FERNANDEZ-LAFUENTE R, et al. Increase in conformational stability of enzymes immobilized on epoxy-activated supports by favoring additional multipoint covalent attachment[J]. Enzyme Microb Technol, 2000, 26(7): 509-515. doi: 10.1016/S0141-0229(99)00188-X
      [12]
      MATEO C, GRAZU V, PESSELA B C C, et al. Advances in the design of new epoxy supports for enzyme immobilization-stabilization[J]. Biochem Society Trans, 2007, 35(6): 1593-1601. doi: 10.1042/BST0351593
      [13]
      BARBOSA O, ORTIZ C, BERENGUER-MURCIA A, et al. Strategies for the one-step immobilization-purification of enzymes as industrial biocatalysts[J]. Biotechnol Adv, 2015, 33(5): 435-456. doi: 10.1016/j.biotechadv.2015.03.006
      [14]
      GUISAN, JOSE M. Immobilization-stabilization of enzymes by multipoint covalent attachment on supports activated with epoxy groups[J]. Immobil Enzyme Cell, 2006, 22: 47-54.
      [15]
      TORRES P, BATISTA-VIERA F. Immobilization of β-galactosidase from Bacillus circulans onto epoxy-activated acrylic supports[J]. J Mol Catal B: Enzym, 2012, 74(3/4): 230-235. doi: 10.1016/j.molcatb.2011.11.006
    • Related Articles

      [1]LIU Guohai, WAN Yalian, SHEN Yue, LIU Hui, HE Siwei, ZHANG Yafei. Complete coverage path planning of irregular convex field for the high clearance unmanned sprayer based on improved particle swarm optimizer algorithm[J]. Journal of South China Agricultural University, 2025, 46(3): 390-398. DOI: 10.7671/j.issn.1001-411X.202409017
      [2]XIE Jinyan, LIU Lixing, YANG Xin, WANG Xiaosa, WANG Xu, LIU Shuteng. A path optimization algorithm for cooperative operation of multiple unmanned mowers in apple orchard[J]. Journal of South China Agricultural University, 2024, 45(4): 578-587. DOI: 10.7671/j.issn.1001-411X.202309010
      [3]ZHANG Yali, MO Zhenjie, TIAN Haoxin, LAN Yubin, WANG Linlin. Path planning algorithm of agricultural robot based on improved APF-FMT*[J]. Journal of South China Agricultural University, 2024, 45(3): 408-415. DOI: 10.7671/j.issn.1001-411X.202305030
      [4]YANG Chen, CHEN Jiyang, HU Qingsong, ZHANG Zheng, NIU Fengjie. Path planning of unmanned vehicle based on multi-objective PSO-ACO fusion algorithm[J]. Journal of South China Agricultural University, 2023, 44(1): 65-73. DOI: 10.7671/j.issn.1001-411X.202205005
      [5]WANG Wei, ZHANG Yanfei, GONG Jinliang, LAN Yubin. Whole area coverage strategy of agricultural robot based on adaptive heating simulated annealing algorithm[J]. Journal of South China Agricultural University, 2021, 42(6): 126-132. DOI: 10.7671/j.issn.1001-411X.202104022
      [6]WANG Wei, ZHANG Yanfei, GONG Jinliang. Study on the whole area coverage of agricultural robot in complex environment based on ant colony-BFS algorithm[J]. Journal of South China Agricultural University, 2021, 42(3): 119-125. DOI: 10.7671/j.issn.1001-411X.202009027
      [7]XIE Zhonghong, WANG Pei, GU Baoxing, JI Changying, TIAN Guangzhao. Application of genetic algorithm based on group and elite strategy for robot navigation[J]. Journal of South China Agricultural University, 2017, 38(5): 110-116. DOI: 10.7671/j.issn.1001-411X.2017.05.019
      [8]WANG Liu-yi,FU Yin-lian,JIN Ling-ling. Studies on Algorithms to Detect and Segment Licence Plate Figure[J]. Journal of South China Agricultural University, 2006, 27(3): 100-102. DOI: 10.7671/j.issn.1001-411X.2006.03.028
      [9]ZHENG Guo-qing,ZHANG Guo-quan. Parameter Estimations of Semi-Parametric Linear Regression Models Using Simulated Annealing Algorithm[J]. Journal of South China Agricultural University, 2006, 27(2): 115-117. DOI: 10.7671/j.issn.1001-411X.2006.02.030
      [10]LI Bo. A Distributed Routing Algorithm Based on Delay-Limiting[J]. Journal of South China Agricultural University, 2003, 24(4): 96-99. DOI: 10.7671/j.issn.1001-411X.2003.04.026
    • Cited by

      Periodical cited type(17)

      1. 蒋沅均,刘红光,余立扬,廖新炜,余劼,陈宇佳,刘畅,秦文祥,郑炜超. 蛋鸡养殖智能巡检机器人设计概述与应用. 中国家禽. 2025(02): 89-97 .
      2. 熊竹青,陈怡然,刘莹,孙雷,刘玉龙,闫银发,田野,冯泽猛,印遇龙. 畜禽养殖场舍电磁环境研究进展. 家畜生态学报. 2025(01): 98-107 .
      3. 王晨晓,耿丹丹,毕瑜林,陈国宏,常国斌,白皓. 肠道微生物及其代谢产物对家禽饲料利用率影响的研究进展. 中国家禽. 2025(05): 152-160 .
      4. 徐君鹏,时磊,王宇,杨文强,杨秋亚. 基于PLC的生猪养殖智能化环境监控及云平台系统设计. 河南科技学院学报(自然科学版). 2025(03): 44-53 .
      5. 王祎娜,王鹏军,陈聪. 肉鸡福利养殖的发展现状与趋势. 智能化农业装备学报(中英文). 2025(02): 105-110 .
      6. 韩雨晓,李帅,王宁,安娅军,张漫,李寒. 基于3D激光雷达的鸡舍通道中心线检测方法. 农业工程学报. 2024(09): 173-181 .
      7. 邵润霖,白宇航,刘睿衡,张京,董梦玥,肖德琴,谢青梅,张新珩. 家禽疫病智能化检测技术研究进展. 中国家禽. 2024(07): 93-100 .
      8. 肖德琴,黄一桂,熊悦淞,刘俊彬,谭祖杰,吕斯婷. 畜禽机器人技术研究进展与未来展望. 华南农业大学学报. 2024(05): 624-634+620 . 本站查看
      9. 刘晓燕. 亚氨基二乙酸型螯合树脂柱-电感耦合等离子体质谱法测定家禽养殖废水中7种金属元素的残留量. 理化检验-化学分册. 2024(07): 744-748 .
      10. 余志安,肖瑞全,李秋生,汤晋,陈恒,谢宁,刘小春. 江西省家禽产业数字化现实基础、制约因素及推进路径. 中国禽业导刊. 2024(08): 19-25 .
      11. 孙杰,马凯欣,王佳乐,胡应宽. 禽舍智慧管家——基于数字农业的家禽养殖应用. 当代畜牧. 2024(06): 1-3 .
      12. 宁小芬,陆美连,莫梅清,方燕,李梦玲,刘皓,王开胜. 我国智慧养殖关键技术、平台及其应用的研究进展. 玉林师范学院学报. 2024(03): 95-100 .
      13. 肖德琴,曾瑞麟,周敏,黄一桂,王文策. 基于DH-YoloX的群养马岗鹅关键行为监测. 农业工程学报. 2023(02): 142-149 .
      14. 冷婷婷. 家禽养殖设备专利分析. 现代畜牧科技. 2023(07): 132-135 .
      15. 胡建平,赵新宇,冯汝广,范国华,赵翠敏. 传感器在设施农业中的应用. 南方农机. 2023(19): 59-61+91 .
      16. 杨雨彤,句金,任守华. 基于深度卷积神经网络的蛋鸡体温监测系统. 现代畜牧科技. 2023(10): 51-55 .
      17. 冉明霞,郑基坛,刘兴廷,谢龙,左二伟,陆阳清. 家禽基因编辑相关技术研究进展及应用. 中国畜禽种业. 2023(12): 36-48 .

      Other cited types(16)

    Catalog

      Article views PDF downloads Cited by(33)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return