LIU Su, LAI Qinghui, DONG Jiayu, et al. Simulation and experiment of air-blowing precision seed-metering device for Panax notoginseng[J]. Journal of South China Agricultural University, 2019, 40(3): 125-132. DOI: 10.7671/j.issn.1001-411X.201806023
    Citation: LIU Su, LAI Qinghui, DONG Jiayu, et al. Simulation and experiment of air-blowing precision seed-metering device for Panax notoginseng[J]. Journal of South China Agricultural University, 2019, 40(3): 125-132. DOI: 10.7671/j.issn.1001-411X.201806023

    Simulation and experiment of air-blowing precision seed-metering device for Panax notoginseng

    More Information
    • Received Date: June 17, 2018
    • Available Online: May 17, 2023
    • Objective 

      A novel kind of air-blowing precision seed-metering device was designed in order to fulfill the mechanized planting needs of Panax notoginseng and reduce seed damage in the process of mechanical seeding.

      Method 

      The main structural parameters of the seed-metering device were determined. The mechanical model in seed clearing process was established. The internal flow field model of the seed-metering device was established, Fluent software was used to simulate the flow field under different air-blowing pressure, and the range of air-blowing pressure for seed clearing was verified. We used orthogonal design and performed bench test to further examine the feasibility of the range of air-blowing pressure and find out the optimal combination of working parameters. Eligible index, leakage sowing index and repeat sowing index were selected as experimental indexes. Operating speed, seed layer height and air-blowing pressure were selected as the influencing factors in the test.

      Result 

      The optimal combination of parameters was the operating speed of 0.6 m/s, seed layer height of 90 mm and air-blowing pressure of 0.5 kPa. Under these conditions, the qualified index was 90.48, the leakage sowing index was 4.24, and the repeat sowing index was 5.28.

      Conclusion 

      The air-blowing seed-metering device can meet the requirements of Panax notoginseng seeding. This study provides a theoretical basis for the field experiment of the seed-metering device. Comparison between the test results and the simulation analysis indicates that the influence of air-blowing pressure changes on the filling performance of the seed-metering device is consistent, and Fluent simulation is feasible for determining the air-blowing pressure for seed clearing.

    • [1]
      崔秀明. 依靠科技进步促进三七产业创新发展[J]. 中国现代中药, 2018, 20(3): 247-252.
      [2]
      张维. 气吹式大豆精量播种机的设计[J]. 中国农机化学报, 2014, 35(4): 6-8.
      [3]
      李洪昌, 高芳, 赵湛. 国内外精密排种器研究现状与发展趋势[J]. 中国农机化学报, 2014, 35(2): 12-16.
      [4]
      史嵩. 气压组合孔式玉米精量排种器设计与试验研究[D]. 北京: 中国农业大学, 2015.
      [5]
      ZULIN Z, UPADHVAVA S K. Hydropneumatic seeder for primed seed[J]. Trans ASABE, 1998, 41(2): 307-314. doi: 10.13031/2013.17175
      [6]
      张泽平, 马成林. 精播排种器及排种理论研究进展[J]. 吉林工业大学学报, 1995, 25(4): 112-117.
      [7]
      张守勤, 王成和. 气力轮式排种器型孔的流场及作用[J]. 农业机械学报, 1991, 22(4): 26-31.
      [8]
      心男. 基于EDEM-FLUENT耦合的气吹式排种器工作过程仿真分析[D]. 长春: 吉林大学, 2013.
      [9]
      马成林. 气吹排种器充填原理的研究[J]. 农业机械学报, 1981, 12(4): 1-13.
      [10]
      胡树荣, 马成林, 李慧珍, 等. 气吹式排种器的排种频率和气流速度对排种质量影响的研究[J]. 吉林大学学报(工学版), 1981(4): 26-35.
      [11]
      刘佳, 崔涛, 张东兴, 等. 气吹式精密排种器工作压力试验研究[J]. 农业工程学报, 2011, 27(12): 18-22. doi: 10.3969/j.issn.1002-6819.2011.12.004
      [12]
      崔涛, 韩丹丹, 殷小伟,等. 内充气吹式玉米精量排种器设计与试验[J]. 农业工程学报, 2017, 33(1): 8-16.
      [13]
      孙裕晶, 马成林, 张勇智. 基于均匀设计的精密排种器结构优化方法[J]. 吉林大学学报(工学版), 2004, 34(4): 569-572.
      [14]
      廖庆喜, 杨波, 李旭, 等. 内充气吹式油菜精量排种器气室流场仿真与试验[J]. 农业机械学报, 2012, 43(4): 51-54. doi: 10.6041/j.issn.1000-1298.2012.04.011
      [15]
      雷小龙, 廖宜涛, 张闻宇, 等. 油麦兼用气送式集排器输种管道气固两相流仿真与试验[J]. 农业机械学报, 2017, 48(3): 57-68.
      [16]
      李成华, 高玉芝. 倾斜圆盘气吹式播种器设计及试验研究[J]. 沈阳农业大学学报, 2007, 38(6): 830-836. doi: 10.3969/j.issn.1000-1700.2007.06.014
      [17]
      胡靖明. 气吹式小粒种子精量排种器气室仿真[J]. 林业机械与木工设备, 2016, 44(7): 12-14.
      [18]
      张波屏. 播种机械设计原理[M]. 北京: 机械工业出版社, 1982.
      [19]
      ORTH R J, MARION S R, GRANGER S, et al. Evaluation of a mechanical seed planter for transplanting Zostera marina (eelgrass) seeds[J]. Aquat Bot, 2009, 90: 204-208. doi: 10.1016/j.aquabot.2008.07.004
      [20]
      张德文, 李林, 王惠民. 精密播种机械[M]. 北京: 农业出版社, 1982.
      [21]
      胡树荣, 马成林, 李慧珍, 等. 气吹式排种器锥孔的结构参数对排种质量影响的研究[J]. 农业机械学报, 1981, 12(3): 21-31.
      [22]
      任闯, 高筱钧, 苏微, 等. 三七种子的物理机械特性试验[J]. 湖南农业大学学报(自然科学版), 2015, 41(1): 109-112.
      [23]
      左春柽, 马成林, 张守勤, 等. 新型气力精密排种器的空气动力学原理[J]. 农业工程学报, 1997, 13(3): 110-114. doi: 10.3321/j.issn:1002-6819.1997.03.023
      [24]
      欧阳洁, 李静海, 崔俊芝. 颗粒轨道模型中相间耦合关系及曳力计算的研究[J]. 动力工程, 2004, 24(6): 857-862. doi: 10.3321/j.issn:1000-6761.2004.06.021
      [25]
      刘素. 气吹式三七精密排种器设计与试验研究[D]. 昆明: 昆明理工大学, 2018.
      [26]
      全国农业机械标准化技术委员会. GB/T6973-2005单粒(精密)播种机试验方法[S]. 北京: 中国标准出版社, 2006.
      [27]
      袁志发, 周静芋. 试验设计与分析[M]. 北京: 高等教育出版社, 2000.
    • Cited by

      Periodical cited type(7)

      1. 陈灿,陈维林,丁浩,陈兰,张跟喜,谢恺舟,戴国俊,王金玉,张涛. 白羽王鸽胚胎期胸肌肌纤维发育规律及相关基因表达分析. 中国畜牧杂志. 2023(07): 99-104 .
      2. 陈秋阳,朱康平,罗毅,沈林園,朱砺,甘麦邻. 猪原代骨骼肌卫星细胞的快速分离、培养和诱导分化研究. 中国畜牧杂志. 2023(08): 118-123 .
      3. 张力,许加龙,黄锦钰,许子月,雷昕诺,卢会鹏,朱睿,孙伟翔,曹海月,王安平,朱善元. 鹅骨骼肌卫星细胞的分离培养与鉴定. 畜牧兽医学报. 2023(10): 4186-4195 .
      4. 王燕星,张雨时,姬海港,刘阳,牛玉芳,韩瑞丽,刘小军,田亚东,康相涛,李转见. 鸡骨骼肌卫星细胞系的建立及分析. 畜牧兽医学报. 2023(12): 4972-4981 .
      5. 戴巍,宋瑞龙,张远浩,邹辉,顾建红,袁燕,卞建春,刘学忠. 鸡骨骼肌卫星细胞的分离培养与鉴定. 畜牧兽医学报. 2021(03): 676-682 .
      6. 马思佳,刘媛,汪序忠,李亭亭,段星,杨松柏,宋丹,李向臣. 褪黑素对脂多糖刺激的滩羊骨骼肌卫星细胞炎性因子表达的影响. 中国畜牧兽医. 2021(09): 3378-3386 .
      7. 徐小春,赵瑞,陈文娟,马文平,马森. 滩羊骨骼肌卫星细胞体外培养及成肌和成脂诱导分化研究. 家畜生态学报. 2020(12): 32-39 .

      Other cited types(4)

    Catalog

      Article views (1520) PDF downloads (1653) Cited by(11)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return