WEI Caili, KONG Linghua, HE Xiaohui, et al. Dispersal dynamics of Cratoxylum cochinchinense population[J]. Journal of South China Agricultural University, 2019, 40(4): 69-76. DOI: 10.7671/j.issn.1001-411X.201806022
    Citation: WEI Caili, KONG Linghua, HE Xiaohui, et al. Dispersal dynamics of Cratoxylum cochinchinense population[J]. Journal of South China Agricultural University, 2019, 40(4): 69-76. DOI: 10.7671/j.issn.1001-411X.201806022

    Dispersal dynamics of Cratoxylum cochinchinense population

    More Information
    • Received Date: June 17, 2018
    • Available Online: May 17, 2023
    • Objective 

      The formation mechanism and diffusion pattern of the spatial distribution of Cratoxylum cochinchinense were studied to promote the protection and management of the natural forest and landscape construction and application in Pearl River Delta areas with poor ecological environment.

      Method 

      We used quadrat survey method and selected C. cochinchinense stands distributed in three different areas (Chashan area and Baiyun mountain in Guangzhou, and Shihua mountain in Taishan). The maps of population spatial distribution and diffusion dynamics were drawn using digital processing with ArcGIS platform. These maps were used for analyzing seed dispersal mode and dispersal dynamics. The function model of diffusion rate (y)-DBH (x) of the C. cochinchinense population was established for predicting population diffusion rate.

      Result 

      The C. cochinchinense trees always aggregated at the local downwind and showed a distribution trend in sampled areas. The growth in projection area of canopy always increased first and then decreased, and the functions of diffusion rate-DBH were univariate quadratic equations in different sampled areas. The growth of canopy of single C. cochinchinense tree first increased and then decreased, and the function model of diffusion rate(y0)-DBH(x0) for single C. cochinchinense tree was: y0=−0.013 5x02+0.310 6x0+0.111 3 (R2=0.999, P=0.000).

      Conclusion 

      1) C. cochinchinense population spread by wind. 2) The diffusion rate of canopy first increased and then decreased. The growth of canopy area increased to the peak when the diffusion rate reached the maximum, and the growth of canopy area was 0 when the diffusion rate was 0. At this time, diffusion of the population was limited. 3) Under artificial management, the diffusion rate of canopy reached the maximum of 1.90 m2/cm when tree DBH was 11.5 cm and the population belonged to the 6th diameter class. At this time thinning should be appropriately done to ensure the maximum benefits. The population diffusion was limited when tree DBH was 23.4 cm and the population belonged to the 12th diameter class. At this time thinning must be done to promote the growth and update of population.

    • [1]
      蔡小英. 武夷山黄山松种群结构与动态研究[D]. 福州: 福建农林大学, 2008.
      [2]
      DIECKMANN U, O'HARA B, WEISSER W. The evolutionary ecology of dispersal[J]. Trends Ecol Evol, 1999, 14(3): 88-90. doi: 10.1016/S0169-5347(98)01571-7
      [3]
      肖治术, 张知彬. 扩散生态学及其意义[J]. 生态学杂志, 2004, 23(6): 107-110. doi: 10.3321/j.issn:1000-4890.2004.06.023
      [4]
      赵秋玲, 杜坤, 裴会明, 等. 小陇山林区庙台槭种子扩散格局及天然更新研究[J]. 林业科技通讯, 2018(8): 3-6.
      [5]
      全威, 王明, 桑卫国. 外来入侵植物风传扩散过程模拟模型选择[J]. 生态学杂志, 2018, 37(9): 2840-2848.
      [6]
      刘明宇, 唐毅. 风力驱动的榆树疏林种子扩散模拟[J]. 生态学杂志, 2018, 37(8): 2524-2531.
      [7]
      陈文文. 水杉(Metasequoia glyptostroboides)自然种群交配系统和扩散格局研究[D]. 上海: 华东师范大学, 2016.
      [8]
      曾心美, 童芬, 刘艳梅, 等. 丫蕊花属植物花粉和种子微形态特征比较及其分类学意义[J]. 西北植物学报, 2017, 37(4): 695-704.
      [9]
      郭志文, 郑景明. 用植物生活史性状预测种子扩散方式[J]. 生物多样性, 2017, 25(9): 966-971.
      [10]
      周禧琳, 吕瑞恒, 韩路, 等. 和田河不同生境灰胡杨种群结构特征及竞争关系分析[J]. 西北林学院学报, 2018, 33(1): 43-48.
      [11]
      REY P J, ALCANTARA J M. Recruitment dynamic of a fleshy-fruited plant (Olea europaea): Connecting patterns of seed dispersal to seedling establishment[J]. J Ecol, 2000, 88(4): 622-633. doi: 10.1046/j.1365-2745.2000.00472.x
      [12]
      邢福武, 余明思. 深圳野生植物[M]. 北京: 中国林业出版社, 2000.
      [13]
      陈勇, 廖绍波, 李伟东, 等. 番禺区主要植被类型及其改造途径[J]. 中国农学通报, 2006, 22(6): 137-140. doi: 10.3969/j.issn.1000-6850.2006.06.032
      [14]
      李果惠, 张尚坤, 叶耀雄, 等. 东莞银瓶山森林公园鹅掌柴群落物种多样性和优势种种群动态[J]. 林业与环境科学, 2018, 34(3): 65-72. doi: 10.3969/j.issn.1006-4427.2018.03.011
      [15]
      刘东蔚, 王海军, 陈勇, 等. 深圳羊台山黄牛木群落学特征研究[J]. 生态科学, 2014, 33(2): 379-385.
      [16]
      MAISUTHISAKUL P, PONGSAWATMANIT R, GORDON M H. Characterization of the phytochemicals and antioxidant properties of extracts from Teaw (Cratoxylum formosum)[J]. Food Chem, 2007, 100(4): 1620-1629. doi: 10.1016/j.foodchem.2005.12.044
      [17]
      王祝年, 李晓霞, 王建荣, 等. 黄牛木果实挥发油的化学成分研究[J]. 热带作物学报, 2010, 31(6): 1047-1049. doi: 10.3969/j.issn.1000-2561.2010.06.032
      [18]
      古炎坤. 生态资源可持续发展理论与实践: 广州市白云山国家重点风景名胜区[M]. 北京: 中国林业出版社, 2005: 3-12.
      [19]
      戴其生, 张梅林, 徐玉伟, 等. 红楝子人工造林试验初报[J]. 安徽林业科技, 1997, 4(1): 33-34.
      [20]
      胡梦宇. 藜蒴景观林的物种流研究[D]. 广州: 华南农业大学, 2016.
      [21]
      彭晓昶, 潘燕, 朱晓媛, 等. 云南7种常见菊科杂草植物具冠毛种子形态与风传播特征[J]. 云南大学学报(自然科学版), 2018, 40(5): 202-211.
      [22]
      中国科学院中国植物志编辑委员会. 中国植物志:第50卷:第2分册[M]. 北京: 科学出版社, 1999.
      [23]
      冯娴慧, 魏清泉. 广州城市近地风场特征研究[J]. 生态环境学报, 2011, 20(10): 1558-1561. doi: 10.3969/j.issn.1674-5906.2011.10.029
      [24]
      甘晓英, 杨万基, 甘晓星, 等. 台山市风场特征与工业布局合理性浅析[J]. 广东气象, 2013, 35(1): 54-58. doi: 10.3969/j.issn.1007-6190.2013.01.012
      [25]
      焦毅. 种子传播的花式招数[J]. 军事文摘, 2018(6): 38-41.
      [26]
      迪利夏提·哈斯木, 阿马努拉·依明尼亚孜, 依明·艾力, 等. 准噶尔荒漠两种猪毛菜果实扩散特性研究[J]. 干旱区资源与环境, 2017, 31(7): 151-155.
      [27]
      王艳莉, 齐欣宇, 杨昊天, 等. 不同生境下砂蓝刺头(Echinops gmelini)形态结构及生物量分配特征[J]. 中国沙漠, 2018, 38(4): 756-764.
      [28]
      赵强民. 广州白云山木荷种群的空间分布格局研究[D]. 广州: 华南农业大学, 2008.
    • Cited by

      Periodical cited type(1)

      1. 解雅茹,金昊延,孔辰,蔡蓓,张令锴. CRISPR/Cas9系统在家畜生殖细胞中的研究进展. 畜牧兽医学报. 2025(02): 479-491 .

      Other cited types(0)

    Catalog

      Article views (1498) PDF downloads (1202) Cited by(1)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return