• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
WU Jialong, GUO Yanbiao, ZHANG Chi, et al. Acidification characteristics and aluminum speciation in soil from mining and non-mining areas of Southern China[J]. Journal of South China Agricultural University, 2019, 40(2): 21-30. DOI: 10.7671/j.issn.1001-411X.201806011
Citation: WU Jialong, GUO Yanbiao, ZHANG Chi, et al. Acidification characteristics and aluminum speciation in soil from mining and non-mining areas of Southern China[J]. Journal of South China Agricultural University, 2019, 40(2): 21-30. DOI: 10.7671/j.issn.1001-411X.201806011

Acidification characteristics and aluminum speciation in soil from mining and non-mining areas of Southern China

More Information
  • Received Date: June 11, 2018
  • Available Online: May 17, 2023
  • Objective 

    To perform comparative analysis of acidification characteristics and aluminum speciation of soil samples collected from mining and non-mining areas in Southern China, and provide a theoretical basis for the remediation of soil acidification in Southern China.

    Method 

    Soil pH, organic matter content, exchangeable acid content, clay contents and cation exchange capacity (CEC) of 31 soil samples in Southern China were measured, and aluminum forms were examined by sequential extraction method. The correlation analysis and principal component analysis were applied to study the distribution of different aluminum species in soil of mining and non-mining areas.

    Result 

    The contents of exchangeable hydrogen (Ex-H) (2.75 cmol·kg−1) in mining soil were significantly higher than those in non-mining soil (0.97 cmol·kg−1). The mining soil had significantly lower pH (H2O) (3.44), CEC (6.34 cmol·kg−1), clay content (13.05%), weakly organically bound aluminum (AlOrw) (3.44 mmol·kg−1) and organically bound aluminum (AlOr) (12.96 mmol·kg−1) contents than those in non-mining soil (4.39, 12.70 cmol·kg–1, 28.64%, 8.32 and 41.46 mmol·kg–1), respectively. For both mining and non-mining soil, the correlation analysis showed that exchangeable aluminum (AlEx) content had significantly negative correlation with pH (H2O) (r=–0.577** and –0.671**), and AlEx content had significantly positive correlation with exchangeable acid quantum (Ex-Q) (r=0.927** and 0.662**), Ex-H (r=0.976** and 0.555*) and exchangeable aluminum (Ex-Al) contents (r=0.870** and 0.632**), respectively. The principal component analysis (PCA) showed that there were significant differences in soil acidification characteristics between mining and non-mining areas, and there were significant differences in the comprehensive characteristics of soil with different pH levels (pH<3.50, 3.50≤pH<4.50, 4.50≤pH<5.50 and pH≥5.50).

    Conclusion 

    Compared with non-mining soils, mining soils have stronger acidity and lower content of organically bound aluminum. Non-mining soils have higher pH (H2O), CEC and clay contents. The acidification characteristics of mining and non-mining soil are significantly different, and the acidification characteristics of soil with different pH gradients are also significantly different. Therefore, it is particularly necessary to improve soil pH and organic matter content in the remediation process of acidified soil of mining area.

  • [1]
    KOCHIAN L V, PINEROS M A, LIU J P, et al. Plant adaptation to acid soils: The molecular basis for crop aluminum resistance[J]. Annu Rev Plant Biol, 2015, 66(66): 571-598.
    [2]
    许小丽, 张金彪. 森林土壤–植物系统铝毒害及防治研究进展[J]. 生态学杂志, 2017, 36(4): 1106-1116.
    [3]
    徐仁扣. 酸化红壤的修复原理与技术[M]. 北京: 科学出版社, 2012: 1-4.
    [4]
    徐仁扣. 土壤酸化及其调控研究进展[J]. 土壤, 2015, 47(2): 238-244.
    [5]
    ZHAO Y, DUAN L, XING J, et al. Soil acidification in China: Is controlling SO2 emissions enough?[J]. Environ Sci Technol, 2009, 43(21): 8021-8026.
    [6]
    GUO J H, LIU X J, ZHANG J L, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008-1010.
    [7]
    LU W Z, MA Y Q, LIN C X. Status of aluminum in environmental compartments contaminated by acidic mine water[J]. J Hazard Mater, 2011, 189(3): 700-709.
    [8]
    BRADY N. The natural and properties of soils[M]. 9th ed. New York: Macmillan, 1984.
    [9]
    TAM N, WONG Y S, WONG M H. Effects of acidity on acute toxicity of aluminum-waste and aluminum-contaminated soil[J]. Hydrobiologia, 1989, 188/189(1): 385-395.
    [10]
    傅柳松, 吴杰民, 杨影, 等. 模拟酸雨对土壤活性铝释出影响研究[J]. 环境科学, 1993, 14(1): 20-24.
    [11]
    王维君. 我国南方一些酸性土壤铝存在形态的初步研究[J]. 热带亚热带土壤科学, 1995, 4(1): 1-8.
    [12]
    鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 1999: 107-178.
    [13]
    邵宗臣, 何群, 王维君. 红壤中铝的形态[J]. 土壤学报, 1998, 35(1): 38-48.
    [14]
    KUBOVÁ J, MATÚŠ P, BUJDOŠ, et al. Influence of acid mining activity on release of aluminum to the environment[J]. Anal Chim Acta, 2005, 547(1): 119-125.
    [15]
    LARSSEN T, SEIP H M, SEMBB A, et al. Acid deposition and its effects in China: An overview[J]. Environ Sci Policy, 1999, 2(1): 9-24.
    [16]
    HODSON M E, DONNER E. Managing adverse soil chemical environments[M]//GREGORY P J, NORTCLIFF S. Soil Conditions and Plant Growth. Chichester: Blackwell, 2013: 195-237.
    [17]
    陈怀满. 土壤中化学物质的行为与环境质量[M]. 北京: 科学出版社, 2002: 194.
    [18]
    沈仁芳. 铝在土壤–植物中的行为及植物的适应机制[M]. 北京: 科学出版社, 2008: 75-79.
    [19]
    孔晓玲, 季国亮. 我国南方土壤的酸度与交换性氢铝的关系[J]. 土壤通报, 1992, 23(5): 203-204.
    [20]
    郭彦彪, 冯宏, 周波, 等. 广东大宝山矿区废石场土壤酸化特征分析[J]. 水土保持学报, 2013, 27(6): 46-50.
    [21]
    王小兵, 骆永明, 李振高, 等. 长期定位施肥对亚热带丘陵地区红壤旱地质量的影响[J]. 土壤学报, 2011, 48(1): 98-102.
    [22]
    索龙, 潘凤娥, 胡俊鹏, 等. 秸秆及生物质炭对砖红壤酸度及交换性能的影响[J]. 土壤, 2015, 47(6): 1157-1162.
    [23]
    王维君, 陈家坊, 何群. 酸性土壤交换性铝形态的研究[J]. 科学通报, 1991, 36(6): 460-463.
    [24]
    PARKER D R, KINRAIDE T B, ZELAZNY L W. On the phytotoxicity of polynuclear hydroxy-aluminum complexes[J]. Soil Sci Soc Am J, 1989, 53(3): 789-796.
    [25]
    KINRAIDE T B. Identity of the rhizotoxic aluminum species[J]. Plant Soil, 1991, 134(1): 167-178.
    [26]
    许海波, 赵道远, 秦超, 等. 水稻土团聚体Cu2+吸附过程中铝的溶出及土壤溶液pH变化[J]. 环境科学, 2014, 35(1): 248-253.
    [27]
    王娅娅, 杨艳芳, 李云飞, 等. 不同退耕年限下菜子湖湿地土壤活性铝形态特征[J]. 长江流域资源与环境, 2016, 25(2): 307-315.
    [28]
    黄洐初, 曲长菱. 土壤中铝的溶出及形态研究[J]. 环境科学, 1996, 17(1): 57-59.
    [29]
    刘敬勇, 赵永久. 硫铁矿资源开采利用过程中的环境污染问题及控制对策[J]. 中国矿业, 2007, 16(7): 55-57.
    [30]
    束文圣, 蓝崇钰. 凡口铅锌尾矿影响植物定居的主要因素分析[J]. 应用生态学报, 1997, 8(3): 314-318.
    [31]
    秦樊鑫, 魏朝富, 黄先飞, 等. 黔西北茶园土壤活性铝的形态分布及影响因素[J]. 环境科学研究, 2015, 28(6): 943-950.
    [32]
    律兆松, 徐琪. 中国白浆土研究[J]. 土壤学报, 1995, 32(1): 32-40.
  • Cited by

    Periodical cited type(10)

    1. 吴家龙,李铤,梁春梅,张俊涛. 土壤酶活抑制剂和外源植物调节剂对薇甘菊的抑制效应. 热带作物学报. 2024(12): 2670-2677 .
    2. 庞晓艳,潘继花,陈迎港,刘飞,叶敦雨,马芳. 日照市茶园土壤活性铝形态特征及影响因素. 山东农业大学学报(自然科学版). 2023(02): 185-193 .
    3. 黎梅杰,段正山,姜华,周凯,罗富成,段新慧,韩博. 铝胁迫下楚雄南苜蓿的生理响应. 云南农业大学学报(自然科学). 2023(04): 615-620 .
    4. 覃圣峰,杨怡森,马俊卿,孙晨瑜,廖虹霖,黄京华. 酸性土壤条件下接种丛枝菌根真菌缓解铝对玉米生长抑制作用的研究. 江苏农业科学. 2022(02): 59-66 .
    5. 任富天,张秋英,杨广,柏杨巍,高红杰,李兆,刘山宝,王健祺. 离子型稀土尾矿深层土壤剖面铵态氮污染特征及影响因素. 土壤学报. 2022(02): 517-527 .
    6. 邓婷,吴家龙. 耕地土壤酸化现状及治理路径探析——以广东省为例. 中国农学通报. 2022(24): 70-74 .
    7. 梁宏卫,Prakash Lakshmanan,刘晓燕,黄柯钧,颜睿,罗霆. 具有固氮和耐酸特性甘蔗属野生割手密的筛选与鉴定. 西南农业学报. 2022(12): 2700-2707 .
    8. 肖家昶,郑开敏,马俊英,郑阳霞. NO对铝胁迫下西瓜根系生理及矿物质含量的影响. 华北农学报. 2021(06): 116-123 .
    9. 陈志为,邓慧华,洪滔,樊月,吴承祯,陈建忠,林晗. 闽北地区杉木、千年桐纯林与杉桐混交林的土壤活性铝形态特征. 应用与环境生物学报. 2020(01): 48-54 .
    10. 张芸萍,易克,谢春凤,解燕,闫晨兵,何志明,刘加红,王瑞宝,李强. 云南富源红壤烟区酸碱度空间分布及其与主要养分关系研究. 扬州大学学报(农业与生命科学版). 2020(05): 113-118 .

    Other cited types(12)

Catalog

    Article views (1584) PDF downloads (1772) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return