Citation: | CHENG Peng, LIU Shanshan, WANG Yu, et al. Screening and identification of a cellulase-producing strain and its degradation of rice straw[J]. Journal of South China Agricultural University, 2019, 40(1): 84-91. DOI: 10.7671/j.issn.1001-411X.201805005 |
To screen efficient cellulose degrading bacteria, and develop a bacterial agent for rice straw degradation and in situ returning to field.
The efficient cellulolytic bacterium CX1 was screened from soil in Wuhu area by using rice straw powder medium and Congo red-cellulose selective medium. The cellulase activity under different substrate conditions and different reaction temperatures were determined. We performed the filter paper disintegration test, soil degradation test, experiment on synergistic degradation of rice straw by bacterium and chemical substances, and tested the effect of fermentation broth on growth of wheat seedlings. The decomposition characteristics of strain CX1 were analyzed.
Strain CX1 was identified as Thermophilic Bacillus sp. based on morphology and 16S rDNA sequence similarity (99%). Using rice straw powder as the substrate, the activity of cellulase from CX1 reached 13.87 U·mL–1 at 50 ℃ and 9.73 U·mL–1 at 65 ℃. The filter paper completely disintegrated after 4 days of culture with CX1. The degradation rate of rice straw cellulose reached 52.55% after 15 days of culture with CX1. The relative degradation rate of rice straw reached 25.38% after 40 days of degradation in soil. The rice straw immersed with 0.05 g·mL–1 NaOH solution in advance was more easily to be degraded by strain CX1, and its weight loss rate increased by 6.69% compared with the control group. The addition of fermentation broth from rice straw degradation with strain CX1 obviously promoted the growth of wheat seedlings, and the germination rate, seedling height, root fresh weight and seedling fresh weight increased by 9.66%, 55.55%, 59.71% and 118.84%, respectively.
Strain CX1 has high temperature resistance and can efficiently degrade cellulose. It can be used for promoting rice straw returning to field in agricultural production.
[1] |
林艳梅, 生吉萍, 申琳, 等. 适冷纤维素降解微生物研究进展[J]. 生物技术, 2010, 20(2): 95-97.
|
[2] |
王文明. 微生物降解秸秆原理简析[J]. 南方农业, 2018, 12(4): 38-40.
|
[3] |
YAN D Z, WANG D J, YANG L Z. Long-term effect of chemical fertilizer, straw, and manure on labile organic matter fractions in a paddy soil[J]. Biol Fertil Soil, 2007, 44(1): 93-101. doi: 10.1007/s00374-007-0183-0
|
[4] |
张蕴琦, 徐凤花, 张书敏, 等. 水稻秸秆降解菌系的筛选及其菌群组成分析[J]. 江苏农业科学, 2017, 45(8): 257-260.
|
[5] |
陈小华, 朱洪光. 农作物秸秆产沼气研究进展与展望[J]. 农业工程学报, 2007, 23(3): 279-283. doi: 10.3321/j.issn:1002-6819.2007.03.054
|
[6] |
LI P P, WANG X J, YUAN X F, et al. Screening of a composite microbial system and its characteristics of wheat straw degradation[J]. Agric Sci China, 2011, 10(10): 1586-1594. doi: 10.1016/S1671-2927(11)60155-7
|
[7] |
焦翔翔, 靳红燕, 王明明. 我国秸秆沼气预处理技术的研究与应用进展[J]. 中国沼气, 2011, 29(1): 45-50.
|
[8] |
杨兴华. 预处理对小麦秸秆糖化及沼气发酵[D]. 杨凌: 西北农林科技大学, 2012.
|
[9] |
刘思颖. 纤维素降解菌的筛选及其在秸秆干发酵产沼气中的应用[D]. 武汉: 湖北工业大学, 2011.
|
[10] |
冯炘, 裴宇航, 周晓飞, 等. 纤维素降解菌的筛选与高效混合菌群的构建[J]. 西北农林科技大学学报(自然科学版), 2012, 40(4): 155-160.
|
[11] |
雷湘兰, 孙倩, 沈振国, 等. 纤维素降解菌复合菌系的构建及产酶研究[J]. 农业与技术, 2018, 38(3): 6-7, 20.
|
[12] |
宋云皓, 满都拉, 段开红, 等. 玉米秸秆纤维素降解菌的筛选及复合菌系的构建[J]. 饲料工业, 2017, 38(19): 33-37.
|
[13] |
YAO M Y, LIU X F, YUAN Y X, et al. Isolation of a fungus with selective delignification and its degradation of corn stalk[J]. Chin J Appl Environ Biol, 2009, 15(3): 427-431.
|
[14] |
张超, 李艳宾, 张磊, 等. 真菌产纤维素酶培养基中刚果红转移机理研究[J]. 微生物学通报, 2006, 33(6): 12-16. doi: 10.3969/j.issn.0253-2654.2006.06.003
|
[15] |
KANG S W, PARK Y S, LEE J S, et al. Production of cellulases and hemicellulases by Aspergillus niger KK2 from lignocellulosic biomass[J]. Bioresour Technol, 2004, 91(2): 153-156. doi: 10.1016/S0960-8524(03)00172-X
|
[16] |
陈亚玲, 陈立志, 程鹏, 等. 高效稻秆降解菌的分离鉴定[J]. 广东农业科学, 2017, 44(5): 72-77.
|
[17] |
李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2006.
|
[18] |
WEI G F, PAN I, DU H M, et al. ERIC-PCR fingerprinting-based community DNA hybridization to pinpoint genome-specific fragments as molecular markers to identify and track populations common to healthy human guts[J]. J Microbiol Methods, 2004, 59(1): 91-108. doi: 10.1016/j.mimet.2004.06.007
|
[19] |
李慧君. 秸秆纤维素降解菌的筛选及其利用研究[D]. 杨凌: 西北农林科技大学, 2010.
|
[20] |
王金主, 王元秀, 李峰, 等. 玉米秸秆中纤维素、半纤维素和木质素的测定[J]. 山东食品发酵, 2010, 158(3): 44-47.
|
[21] |
韦中, 徐春淼, 郑海平, 等. “挂壁”法筛选常温稻秆腐解菌及其降解能力研究[J]. 农业环境科学学报, 2015, 34(10): 2027-2031. doi: 10.11654/jaes.2015.10.027
|
[22] |
任世英, 邵奎, 李雯, 等. 一株耐高温纤维素酶产生菌的分离和鉴定[J]. 工业微生物, 2016, 46(4): 19-24. doi: 10.3969/j.issn.1001-6678.2016.04.004
|
[23] |
王友保. 生态学实验[M]. 芜湖: 安徽师范大学出版社, 2010.
|
[24] |
李晓秀. 玉米秸秆复合降解菌ZFX-1的构建及降解效果的初探[D]. 哈尔滨: 东北农业大学, 2017.
|
[25] |
韩梦颖, 王雨桐, 高丽, 等. 降解秸秆微生物及秸秆腐熟剂的研究进展[J]. 南方农业学报, 2017, 48(6): 1024-1030. doi: 10.3969/j.issn.2095-1191.2017.06.14
|
[26] |
王海滨, 韩立荣, 冯俊涛, 等. 高效纤维素降解菌的筛选及复合菌系的构建[J]. 农业生物技术学报, 2015, 23(4): 421-431. doi: 10.3969/j.issn.1674-7968.2015.04.001
|
[27] |
胡丽娟, 薛高尚, 卢向阳, 等. 响应面法优化芽孢杆菌25-2产纤维素酶发酵条件[J]. 酿酒科技, 2012, 214(4): 21-26.
|
[28] |
王晓林, 张西玉, 白方文, 等. 高效降解秸秆纤维素菌株的筛选鉴定及产酶条件优化[J]. 四川师范大学学报(自然科学版), 2011, 34(1): 105-109. doi: 10.3969/j.issn.1001-8395.2011.01.022
|
[29] |
KAZEEM M O, SHAH U K M, BAHARUDDIN A S, et al. Prospecting agro-waste cocktail: Supplementation for cellulase production by a newly isolated thermophilic Bacillus licheniformis 2D55[J]. Appl Biochem Biotechnol, 2017, 182(4): 1318-1340. doi: 10.1007/s12010-017-2401-z
|
[30] |
LIAO H, XU C, TAN S, et al. Production and characterization of acidophilic xylanolytic enzymes from Penicillium oxalicum GZ-2[J]. Bioresour Technol, 2012, 123(21): 117-124.
|
[31] |
CHANG A J, FAN J Y, WEN X H. Screening of fungi capable of highly selective degradation of lignin in rice straw[J]. Int Biodeter Biodegr, 2012, 72(7): 26-30.
|