QIAN Minghua, ZHANG Jifu, ZHANG Yun, et al. Immobilization of lipase on macroporous resin by adsorption-crosslinking method[J]. Journal of South China Agricultural University, 2019, 40(2): 103-110. DOI: 10.7671/j.issn.1001-411X.201804031
    Citation: QIAN Minghua, ZHANG Jifu, ZHANG Yun, et al. Immobilization of lipase on macroporous resin by adsorption-crosslinking method[J]. Journal of South China Agricultural University, 2019, 40(2): 103-110. DOI: 10.7671/j.issn.1001-411X.201804031

    Immobilization of lipase on macroporous resin by adsorption-crosslinking method

    More Information
    • Received Date: April 15, 2018
    • Available Online: May 17, 2023
    • Objective 

      To provide a basis for immobilization of industrial enzymes such as lipase using macroporous resin for adsorption and epoxy crosslinker for crosslinking.

      Method 

      The immobilization of lipase was performed through adsorption using macroporous resin as the carrier and epoxy crosslinker as the crosslinking agent. We investigated the effects of different factors on adsorption-crosslinking immobilization, and used response surface design to optimize the immobilization conditions. The immobilized enzyme was prepared and its stability was investigated.

      Result 

      Macroporous resin HPD750 was selected as the carrier, and poly (ethylene glycol) diglycidyl ether was selected as the crosslinker. The optimal conditions of lipase immobilization were as follows: Adsorption temperature 45 ℃, enzyme addition amount 60 mg·g–1, crosslinking temperature 30 ℃, crosslinking time 12.5 h, pH6.36, and comcentration of crosslinking agent 0.7%. Under these optimized conditions, the immobilized lipase activity was 565.31 U·g–1 and the recycled rate of lipase activity was 32.16%. Compared with free lipase, the immobilized lipase exhibited obviously better thermal stability and pH stability. The immobilized lipase was of good operation stability and remained 34.86% of the original activity after repeated usage for 10 times. The immobilized lipase also exhibited good storage stability and remained 64.81% of the original activity after storage at 4 ℃ for 30 days.

      Conclusion 

      Using macroporous resin HPD750 as the carrier and poly (ethylene glycol) diglycidyl ether as the crosslinker, the immobilized enzyme has significantly improved thermal stability and pH stability, and it also exhibits good operation stability and storage stability.

    • [1]
      VENDITTI I, PALOCCI C, CHRONOPOULOU L, et al. Candida rugosa lipase immobilization on hydrophilic charged gold nanoparticles as promising biocatalysts: Activity and stability investigations[J]. Colloids Surf B Biointerfaces, 2015, 131: 93-101. doi: 10.1016/j.colsurfb.2015.04.046
      [2]
      WU Z, QI W, WANG M, et al. Lipase immobilized on novel ceramic supporter with Ni activation for efficient cinnamyl acetate synthesis[J]. J Mol Catal B: Enzym, 2014, 110: 32-38. doi: 10.1016/j.molcatb.2014.09.010
      [3]
      LI Y, WANG W, HAN P. Immobilization of Candida, sp.99-125 lipase onto silanized SBA-15 mesoporous materials by physical adsorption[J]. Korean J Chem Eng, 2014, 31(1): 98-103. doi: 10.1007/s11814-013-0198-1
      [4]
      ARAVINDAN R, ANBUMATHI P, VIRUTHAGIRI T. Lipase applications in food industry[J]. Indian J Biotechnol, 2007, 6(2): 141-158.
      [5]
      SHELDON R A. Enzyme immobilization: The quest for optimum performance[J]. Adv Synth Catal, 2007, 349(8/9): 1289-1307.
      [6]
      贾存勤, 李阳春, 屠鹏飞, 等. HPD系列大孔吸附树脂预处理方法研究[J]. 中国中药杂志, 2005, 30(18): 1425-1427. doi: 10.3321/j.issn:1001-5302.2005.18.010
      [7]
      LI C, ZHANG G, LIU N, et al. Preparation and properties of rhizopus oryzae lipase immobilized using an adsorption-crosslinking method[J]. Int J Food Prop, 2016, 19(8): 1776-1785. doi: 10.1080/10942912.2015.1107732
      [8]
      KILINC A, TEKE M, ONAL S, et al. Immobilization of pancreatic lipase on chitin and chitosan[J]. Prep Biochem Biotechnol, 2006, 36(2): 153-163. doi: 10.1080/10826060500533976
      [9]
      DOSANJH N S, KAUR J. Immobilization, stability and esterification studies of a lipase from a Bacillus sp.[J]. Biotechnol Appl Biochem, 2002, 36: 7-12. doi: 10.1042/BA20010070
      [10]
      SCHOEVAART R, WOLBERS M W, GOLUBOVIC M, et al. Preparation, optimization, and structures of cross-linked enzyme aggregates (CLEAs)[J]. Biotechnol Bioeng, 2004, 87(6): 754-762. doi: 10.1002/(ISSN)1097-0290
      [11]
      ALNOCH R, RODRIGUES DE MELO R, PALOMO J, et al. New tailor-made alkyl-aldehyde bifunctional supports for lipase immobilization[J]. Catalysts, 2016, 6(12): 191. doi: 10.3390/catal6120191
      [12]
      侯爱军, 徐冰斌, 梁亮, 等. 改进铜皂−分光光度法测定脂肪酶活力[J]. 皮革科学与工程, 2011, 21(1): 22-27. doi: 10.3969/j.issn.1004-7964.2011.01.005
      [13]
      LEI L, BAI Y, LI Y, et al. Study on immobilization of lipase onto magnetic microspheres with epoxy groups[J]. J Magn Magn Mater, 2009, 321(4): 252-258. doi: 10.1016/j.jmmm.2008.08.047
      [14]
      HASAN F, SHAH A A, HAMEED A. Industrial applications of microbial lipases[J]. Enzyme Microb Technol, 2006, 39(2): 235-251. doi: 10.1016/j.enzmictec.2005.10.016
      [15]
      JE H H, NOH S, HONG S G, et al. Cellulose nanofibers for magnetically-separable and highly loaded enzyme immobilization[J]. Chem Eng J, 2017, 323(1): 425-433.
      [16]
      徐珊, 李任强, 郑振华, 等. 脂肪酶的包埋和交联固定化研究[J]. 云南农业大学学报(自然科学版), 2017, 32(6): 1-9.
      [17]
      钱明华. 一种经济、高效环氧树脂及交联剂固定化脂肪酶的研究[D]. 广州: 暨南大学, 2018.
    • Cited by

      Periodical cited type(17)

      1. 蒋沅均,刘红光,余立扬,廖新炜,余劼,陈宇佳,刘畅,秦文祥,郑炜超. 蛋鸡养殖智能巡检机器人设计概述与应用. 中国家禽. 2025(02): 89-97 .
      2. 熊竹青,陈怡然,刘莹,孙雷,刘玉龙,闫银发,田野,冯泽猛,印遇龙. 畜禽养殖场舍电磁环境研究进展. 家畜生态学报. 2025(01): 98-107 .
      3. 王晨晓,耿丹丹,毕瑜林,陈国宏,常国斌,白皓. 肠道微生物及其代谢产物对家禽饲料利用率影响的研究进展. 中国家禽. 2025(05): 152-160 .
      4. 徐君鹏,时磊,王宇,杨文强,杨秋亚. 基于PLC的生猪养殖智能化环境监控及云平台系统设计. 河南科技学院学报(自然科学版). 2025(03): 44-53 .
      5. 王祎娜,王鹏军,陈聪. 肉鸡福利养殖的发展现状与趋势. 智能化农业装备学报(中英文). 2025(02): 105-110 .
      6. 韩雨晓,李帅,王宁,安娅军,张漫,李寒. 基于3D激光雷达的鸡舍通道中心线检测方法. 农业工程学报. 2024(09): 173-181 .
      7. 邵润霖,白宇航,刘睿衡,张京,董梦玥,肖德琴,谢青梅,张新珩. 家禽疫病智能化检测技术研究进展. 中国家禽. 2024(07): 93-100 .
      8. 肖德琴,黄一桂,熊悦淞,刘俊彬,谭祖杰,吕斯婷. 畜禽机器人技术研究进展与未来展望. 华南农业大学学报. 2024(05): 624-634+620 . 本站查看
      9. 刘晓燕. 亚氨基二乙酸型螯合树脂柱-电感耦合等离子体质谱法测定家禽养殖废水中7种金属元素的残留量. 理化检验-化学分册. 2024(07): 744-748 .
      10. 余志安,肖瑞全,李秋生,汤晋,陈恒,谢宁,刘小春. 江西省家禽产业数字化现实基础、制约因素及推进路径. 中国禽业导刊. 2024(08): 19-25 .
      11. 孙杰,马凯欣,王佳乐,胡应宽. 禽舍智慧管家——基于数字农业的家禽养殖应用. 当代畜牧. 2024(06): 1-3 .
      12. 宁小芬,陆美连,莫梅清,方燕,李梦玲,刘皓,王开胜. 我国智慧养殖关键技术、平台及其应用的研究进展. 玉林师范学院学报. 2024(03): 95-100 .
      13. 肖德琴,曾瑞麟,周敏,黄一桂,王文策. 基于DH-YoloX的群养马岗鹅关键行为监测. 农业工程学报. 2023(02): 142-149 .
      14. 冷婷婷. 家禽养殖设备专利分析. 现代畜牧科技. 2023(07): 132-135 .
      15. 胡建平,赵新宇,冯汝广,范国华,赵翠敏. 传感器在设施农业中的应用. 南方农机. 2023(19): 59-61+91 .
      16. 杨雨彤,句金,任守华. 基于深度卷积神经网络的蛋鸡体温监测系统. 现代畜牧科技. 2023(10): 51-55 .
      17. 冉明霞,郑基坛,刘兴廷,谢龙,左二伟,陆阳清. 家禽基因编辑相关技术研究进展及应用. 中国畜禽种业. 2023(12): 36-48 .

      Other cited types(16)

    Catalog

      Article views (1546) PDF downloads (2104) Cited by(33)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return