• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
CHENG Hui, JI Changying, ZHANG Bo, et al. Optimization of drying process for Lentinus edodes by combing heat pump with vacuum [J]. Journal of South China Agricultural University, 2019, 40(1): 125-132. DOI: 10.7671/j.issn.1001-411X.201804021
Citation: CHENG Hui, JI Changying, ZHANG Bo, et al. Optimization of drying process for Lentinus edodes by combing heat pump with vacuum [J]. Journal of South China Agricultural University, 2019, 40(1): 125-132. DOI: 10.7671/j.issn.1001-411X.201804021

Optimization of drying process for Lentinus edodes by combing heat pump with vacuum

More Information
  • Received Date: April 10, 2018
  • Available Online: May 17, 2023
  • Objective 

    To reduce the cost of processing, and obtain high quality dried Lentinus edodes.

    Method 

    On the basis of single-factor experiment, Box-Behnken Design (BBD) was used to study the effects of heat pump temperature(A), vacuum degree(B) and conversion point moisture content(C) on unit energy consumption, sense judgment, rehydration ratio and hardness. We deduced a multinomial regression model, optimized the combined drying technology and compared with single heat pump drying and single vacuum drying.

    Result 

    The optimal parameters were obtained as follows: The heat pump temperature was 49 ℃, the vacuum degree was 110 Pa, and the conversion point moisture content was 56%. Under these conditions, the tested unit energy consumption was 345.01 kJ·g–1, the sense judgment was 8.3, the rehydration ratio was 2.72, and the hardness was 3.61 N, which were close to the predicted values. The relative errors were 0.19%, 3.61%, 1.47% and 1.66% respectively. The unit energy consumption of combined drying was 37.69% less than that of vacuum drying and higher than that of heat pump drying. The sense judgment and rehydration ratio of combined drying were close to those of single vacuum drying and higher than those of heat pump drying. The hardness was slightly larger than that of vacuum drying and less than that of heat pump drying.

    Conclusion 

    The method combining heat pump drying and vacuum drying obtained dried L. edodes with low energy consumption and good quality. It solves the poor quality in heat pump drying and high energy consumption in vacuum drying. This study can provide a theoretical basis for heat pump-vacuum combined drying of L. edodes.

  • [1]
    陈前江. 我国香菇产业链的经济学分析[D]. 武汉: 华中农业大学, 2010.
    [2]
    戚玉欣, 陶志国. 空气源热泵干燥技术的研究现状与发展展望[J]. 资源节约与环保, 2016(5): 69.
    [3]
    聂林林, 张国治, 王安建, 等. 热泵干燥对香菇品质特性的影响[J]. 河南工业大学学报(自然科学版), 2015, 36(6): 59-63.
    [4]
    徐建国, 徐刚, 张森旺, 等. 热泵–热风分段式联合干燥胡萝卜片研究[J]. 食品工业科技, 2014, 35(12): 230-235.
    [5]
    徐艳阳. 毛竹笋真空冷冻与热风联合干燥研究[D]. 无锡: 江南大学, 2005.
    [6]
    高飞. 微波、远红外、真空冷冻及其与热风联合干燥对红枣品质的影响[D]. 太谷: 山西农业大学, 2013.
    [7]
    孙翠, 王钰, 沈小瑞, 等. 杏鲍菇热风–真空冷冻干燥工艺优化[J]. 食品与机械, 2017, 33(2): 189-193.
    [8]
    邵平, 薛力, 陈晓晓, 等. 热风真空联合干燥对银耳品质及其微观结构影响[J]. 核农学报, 2013, 27(6): 805-810.
    [9]
    孙海涛, 金昱言, 邵信儒, 等. 真空干燥对野生软枣猕猴桃果脯感官品质的影响[J]. 食品科学, 2014, 35(10): 82-87. doi: 10.7506/spkx1002-6630-201410015
    [10]
    刘文超, 段续, 任广跃, 等. 黄秋葵真空干燥行为及干燥参数的响应面试验优化(英文)[J]. 食品科学, 2016, 37(24): 29-39. doi: 10.7506/spkx1002-6630-201624005
    [11]
    石启龙, 赵亚, 马占强. 真空干燥雪莲果粉玻璃化转变温度与贮藏稳定性研究[J]. 农业机械学报, 2014, 45(2): 215-219.
    [12]
    张慧恩, 李巧珍, 黄毅. 桑葚真空干燥工艺参数的研究[J]. 农产品加工(学刊), 2011(2): 57-59.
    [13]
    TAMAS A, JUDIT T T, ZOLTAN C, et al. Comparison of drying and quality characteristics of pear (Pyrus communis L.) using mid-infrared-freeze drying and single stage of freeze drying[J]. Int J Food Eng, 2017, 13(4): 322-336.
    [14]
    龙成树, 刘清化, 李浩权, 等. 响应面法优化桑叶热泵干燥速率模型[J]. 现代农业装备, 2016(5): 24-32. doi: 10.3969/j.issn.1673-2154.2016.05.010
    [15]
    关志强, 郑立静, 李敏, 等. 罗非鱼片热泵–微波联合干燥工艺[J]. 农业工程学报, 2012, 28(1): 270-275. doi: 10.3969/j.issn.1002-6819.2012.01.048
    [16]
    陈健凯, 林河通, 林艺芬, 等. 基于品质和能耗的杏鲍菇微波真空干燥工艺参数优化[J]. 农业工程学报, 2014, 30(3): 277-284.
    [17]
    王安建, 刘丽娜, 魏书信, 等. 响应面法优化香菇热泵干燥工艺[J]. 食品科技, 2016, 41(3): 62-66. doi: 10.3969/j.issn.1007-7561.2016.03.014
    [18]
    中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准食品中水分的测定: GB5009.3—2016[S]. 北京: 中国标准出版社, 2016.
    [19]
    陈君琛, 杨艺龙, 翁敏劼, 等. 即食杏鲍菇热风–真空联合干燥工艺优化[J]. 农业工程学报, 2014, 30(14): 331-338. doi: 10.3969/j.issn.1002-6819.2014.14.041
    [20]
    王冬, 邹康平. 干香菇复水性的研究[J]. 黑龙江科技信息, 2014(19): 35. doi: 10.3969/j.issn.1673-1328.2014.19.031
    [21]
    姬长英, 蒋思杰, 张波, 等. 辣椒热泵干燥特性及工艺参数优化[J]. 农业工程学报, 2017, 33(13): 296-302. doi: 10.11975/j.issn.1002-6819.2017.13.039
    [22]
    胡庆国. 毛豆热风与真空微波联合干燥过程研究[D]. 无锡: 江南大学, 2006.
    [23]
    JAYARAMAN K S, DAS GUPTA D K, RAO N B. Effect of pretreatment with salt and sucrose on the quality and stability of dehydrated cauliflower[J]. Int J Food Sci Technol, 1990, 25(1): 47-60.
    [24]
    吴明晖, 余勇, 郭磊, 等. 真空与热风联合干燥香菇的研究[J]. 包装与食品机械, 2014, 32(2): 29-33. doi: 10.3969/j.issn.1005-1295.2014.02.007
    [25]
    高伦江, 曾顺德, 李晶, 等. 热风微波联合干制对香菇品质及风味的影响[J]. 食品工业科技, 2017, 38(21): 80-83.
    [26]
    SEYFI S, MUSTAFA A, HIKMET D, et al. Mushroom drying with solar assisted heat pump system[J]. Energy Convers Manage, 2013, 72(8): 171-178.
    [27]
    黎斌, 彭桂兰, 罗传伟, 等. 油菜籽真空干燥工艺优化[J]. 食品与发酵工业, 2016, 42(12): 105-110.
    [28]
    张绪坤. 热泵干燥热力学分析及典型物料干燥性能研究[D]. 北京: 中国农业大学, 2005.
    [29]
    芮汉明, 贺丰霞, 郭凯. 香菇干燥过程中挥发性成分的研究[J]. 食品科学, 2009, 30(8): 255-259. doi: 10.3321/j.issn:1002-6630.2009.08.058
    [30]
    徐建国, 徐刚, 张绪坤, 等. 利用核磁共振成像技术分析胡萝卜干燥过程中内部水分传递[J]. 农业工程学报, 2013, 29(12): 271-276. doi: 10.3969/j.issn.1002-6819.2013.12.034
  • Related Articles

    [1]LI Gen, PENG Miaolian, YAN Donghan, ZHAO Haijun, CHEN Xiaoqiang, CAI Gengyuan. Effect of backfat loss on reproductive performance of the second parity sows[J]. Journal of South China Agricultural University, 2019, 40(S1): 115-117.
    [2]DENG Bing-mao, LEI Chun-lin. Normal Families and Shared Values of Holomorphic Functions[J]. Journal of South China Agricultural University, 2012, 33(2): 270-272. DOI: 10.7671/j.issn.1001-411X.2012.02.033
    [3]ZENG Cui-ping, YANG De-gui. Uniqueness of Meromorphic Functions Which Share Small Functions[J]. Journal of South China Agricultural University, 2011, 32(2): 107-108. DOI: 10.7671/j.issn.1001-411X.2011.02.025
    [4]SONG Yan-xia, DONG Yi-zhi, ZHANG Mao-xin. Studies on the Influence of Phyllotreta striolata on the Value Loss of Brassica campestrist and the Economic Thresholds[J]. Journal of South China Agricultural University, 2011, 32(1): 53-56. DOI: 10.7671/j.issn.1001-411X.2011.01.012
    [5]LEI Chun-lin,FANG Ming-liang,WANG Xue-qin. Some Normality Criteria for Families of Holomorphic Functions[J]. Journal of South China Agricultural University, 2008, 29(4). DOI: 10.7671/j.issn.1001-411X.2008.04.026
    [6]Monchai DAUNGJINDA. Software applications for providing comprehensive computing capabilities to problems related to mixed models in animal breeding[J]. Journal of South China Agricultural University, 2005, 26(Z1).
    [7]YANG De-gui, ZHANG Kun-yi. Dynamics of meromorphic functions[J]. Journal of South China Agricultural University, 2005, 26(4): 114-117. DOI: 10.7671/j.issn.1001-411X.2005.04.029
    [8]The Minimum Synthetic Loss Rule and Optimization Analysis in Multi- Index Uniformly Orthogonal Designs[J]. Journal of South China Agricultural University, 2002, 23(1): 85-88. DOI: 10.7671/j.issn.1001-411X.2002.01.025
    [9]Yu Caiyu,Wang Shi''an. Weighted Power Means of Functions and Their Applications[J]. Journal of South China Agricultural University, 1999, (2): 109-113.
    [10]Ying Youqin Zhou Huijuan Gao Xuebiao Feng Zhixin. THE RELATIONSHIPS BETWEEN THE INFECTION OF Hirschmanniella oryzae , RICE GROWTH AND YIELD LOSS[J]. Journal of South China Agricultural University, 1996, (4): 14-17.
  • Cited by

    Periodical cited type(16)

    1. 陈金荣,许燕,周建平,王小荣. 基于改进YOLOv5的红花目标检测算法研究. 农机化研究. 2025(01): 26-32+66 .
    2. 胡雯婧,余俊龙,梁雷,张静,董卫彬,蒋龙泉. 基于计算机视觉的农作物病虫害识别研究综述. 微型电脑应用. 2025(03): 90-93+97 .
    3. 郭标琦,王联国. 基于多卷积神经网络融合的当归病虫害识别方法. 江苏农业学报. 2024(01): 121-129 .
    4. 杨巨成,燕聪,贾庆祥,沈杰,刘建征. 基于图像超分辨率预处理和二次迁移学习的水稻病害识别方法. 天津科技大学学报. 2024(06): 66-74 .
    5. 李志臣,凌秀军,李鸿秋,李志军. 基于改进ShuffleNet的板栗分级方法. 山东农业大学学报(自然科学版). 2023(02): 299-307 .
    6. 刘岩,张宁宁,海玲,王斌虎. 基于机器视觉的玉米虫害区域SIFT识别仿真. 计算机仿真. 2023(07): 215-219 .
    7. 王营瑛,郑铖,董伟,高海涛. 一种基于改进卷积神经网络的玉米病害高效识别模型. 安徽科技学院学报. 2023(04): 96-104 .
    8. 孙道宗,刘欢,刘锦源,丁郑,谢家兴,王卫星. 基于改进YOLOv4模型的茶叶病害识别. 西北农林科技大学学报(自然科学版). 2023(09): 145-154 .
    9. 范世达,马伟荣,姜文博,张辉,王金振,李琦,何鹏博,彭磊,黄兆波. 基于深度学习的柑橘黄龙病远程诊断技术初探. 中国果树. 2022(04): 76-79+86+133 .
    10. 刘延鑫,王俊峰,杜传印,丁睿柔,高强,宗浩,姜红花. 基于YOLOv3的多类烟草叶部病害检测研究. 中国烟草科学. 2022(02): 94-100 .
    11. 冼远清. 改进的YOLOv3常见鱼病检测算法. 福建电脑. 2022(07): 11-14 .
    12. 郭文娟,冯全,李相周. 基于农作物病害检测与识别的卷积神经网络模型研究进展. 中国农机化学报. 2022(10): 157-166 .
    13. 何前,郭峰林,方皓正,李雅琴. 基于改进LeNet-5模型的玉米病害识别. 江苏农业科学. 2022(20): 35-41 .
    14. 伏荣桃,王剑,陈诚,李洪浩,赵黎宇,卢代华. 基于深度学习的水稻稻曲病图像识别与分级鉴定. 四川农业科技. 2022(10): 35-40 .
    15. 樊湘鹏,周建平,许燕,李开敬,温德圣. 基于优化Faster R-CNN的棉花苗期杂草识别与定位. 农业机械学报. 2021(05): 26-34 .
    16. 郭阳,许贝贝,陈桂鹏,丁建,严志雁,梁华,吴昌华. 基于卷积神经网络的水稻虫害识别方法. 中国农业科技导报. 2021(11): 99-109 .

    Other cited types(26)

Catalog

    Article views (1042) PDF downloads (1077) Cited by(42)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return