LU Shuifeng, WANG Chengyu, DU Yan, et al. Effects of rice planting years on physicochemical property and fungi community in soda saline-alkali soil[J]. Journal of South China Agricultural University, 2019, 40(1): 15-22. DOI: 10.7671/j.issn.1001-411X.201804009
    Citation: LU Shuifeng, WANG Chengyu, DU Yan, et al. Effects of rice planting years on physicochemical property and fungi community in soda saline-alkali soil[J]. Journal of South China Agricultural University, 2019, 40(1): 15-22. DOI: 10.7671/j.issn.1001-411X.201804009

    Effects of rice planting years on physicochemical property and fungi community in soda saline-alkali soil

    More Information
    • Received Date: April 03, 2018
    • Available Online: May 17, 2023
    • Objective 

      To investigate the effects of different rice planting years on physicochemical properties and fungi communities of soda saline-alkali soil, and provide a theoretical basis for saline-alkali soil improvement.

      Method 

      Soda alkali-saline soil that had been planted with rice for 1, 3, 5, 15, 20 and 50 years respectively were chosen as research objects. The routine analysis and IlluminaMiSeq platform sequencing analysis were conducted to study the basic soil physicochemical properties, richness and diversity of fungi in ITS1+ITS2 domain in soda saline-alkali soil with different rice planting year.

      Result 

      With the increase of rice planting year, pH, electrical conductivity, total alkalinity and water soluble total salt of saline-alkali soil decreased significantly; soil organic matter and microbial biomass carbon contents increased significantly; total nitrogen, ammonium nitrogen and nitrate nitrogen contents presented increasing trends; available phosphorus increased significantly first, reaching the maximum in the treatment of planting rice for 20 years, then decreased slightly; and available potassium content had no obvious changing pattern. The effective sequence numbers of fungi obtained in soil with 1-, 3-, 5-, 15-, 20- and 50- year rice planting periods were 56 942, 42 482, 45 987, 92 214, 64 665 and 68 515, including five phyla, 12 classes, 25 orders, 26 families, 45 genera and 59 species. Cladosporium, Holtermanniella and Massariosphaeria were dominant with relative abundance more than 2%. The α diversity indexes first increased and then decreased with the extension of rice planting years, reaching the largest in soil planted with rice for five years. Soil pH, electrical conductivity, total alkalinity, water soluble total salt and available potassium contents were the main environmental factors affecting fungi communities of soda alkali-saline soil after planting rice.

      Conclusion 

      Planting rice can siginificantly change the basic physicochemical properties and fungi community structures of soda alkali-saline soil, and promote soil improvement.

    • [1]
      汤洁, 卞建民, 李昭明. 基于数字技术的吉林西部水土环境综合研究[M]. 北京: 科学出版社, 2011.
      [2]
      YU J, WANG Z, MEIXNER F X, et al. Biogeochemical characterizations and reclamation strategies of saline sodic soil in Northeastern China[J]. Clean (Weinh), 2010, 38(11): 1010-1016.
      [3]
      赵兰坡, 冯君, 王宇, 等. 松嫩平原盐碱地种稻开发的理论与技术问题[J]. 吉林农业大学学报, 2012, 34(3): 237-241.
      [4]
      AHN M Y, ZIMMERMAN A R, COMERFORD N B, et al. Carbon mineralization and labile organic carbonpools in the sandy soils of a North Florida watershed[J]. Ecosystems, 2009, 12(4): 672-685. doi: 10.1007/s10021-009-9250-8
      [5]
      MORRIS S J, BLACKWOOD C B. Soil microbiology ecology and biochemistry[M]. Salt Lake: Academic Press, 2015: 273-309.
      [6]
      NANNIPIERI P, ASCHER J, CECCHERINI M T, et al. Microbial diversity and soil functions[J]. Eur J Soil Sci, 2003, 54(4): 655-670. doi: 10.1046/j.1351-0754.2003.0556.x
      [7]
      JOHANSSON J F, PAUL L R, FINLAY R D. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture[J]. FEMS Microbiol Ecol, 2004, 48(1): 1-13.
      [8]
      O’DONNELL A G, SEASMAN M, MACRAE A, et al. Plants and fertilisers as drivers of change in microbial community structure and function in soils[J]. Plant Soil, 2001, 232(1/2): 135-145. doi: 10.1023/A:1010394221729
      [9]
      SINGH B K, NUNAN N, RIDGWAY K P, et al. Relationship between assemblages of mycorrhizal fungi and bacteria on grass roots[J]. Environ Microbiol, 2008, 10(2): 534-541. doi: 10.1111/j.1462-2920.2007.01474.x
      [10]
      HAWKSWORTH D L. Global species numbers of fungi: Are tropical studies and molecular approaches contributing to a more robust estimate?[J]. Biodivers Conserv, 2012, 21(9): 2425-2433. doi: 10.1007/s10531-012-0335-x
      [11]
      MARGULIES M, EGHOLM M, ALTMAN W E, et al. Genome sequencing in open microfabricated high-density picoliter reactors[J]. Nature, 2005, 437(7057): 376-380. doi: 10.1038/nature03959
      [12]
      崔振. 云计算在高通量测序数据分析中的应用[J]. 基因组学与应用生物学, 2014, 33(2): 467-471.
      [13]
      WIBBERG D, RUPP O, JELONEK L, et al. Improved genome sequence of the phytopathogenic fungus Rhizoctonia solani AG1-IB 7/3/14 as established by deep mate-pair sequencing on the MiSeq (Illumina) system[J]. J Biotechnol, 2015, 203: 19-21. doi: 10.1016/j.jbiotec.2015.03.005
      [14]
      柴立涛, 耿玉辉, 宋引弟, 等. 施磷对吉林省西部盐碱土水田土壤无机磷组分的影响[J]. 水土保持学报, 2015, 29(6): 197-201.
      [15]
      鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
      [16]
      AMATO K R, YEOMAN C J, KENT A, et al. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes[J]. ISME J, 2013, 7(7): 1344-1353. doi: 10.1038/ismej.2013.16
      [17]
      牛世全, 龙洋, 李海云, 等. 应用Illumina MiSeq高通量测序技术分析河西走廊地区盐碱土壤微生物多样性[J]. 微生物学通报, 2017, 44(9): 2067-2078.
      [18]
      冯君, 马秀兰, 王宇, 等. 微域内苏打盐碱化草原草甸碱土和草甸盐土土壤剖面特征[J]. 吉林农业大学学报, 2018, 40(6): 1-8.
      [19]
      LIU C, DING N, FU Q, et al. The influence of soil properties on the size and structure of bacterial and fungal communities along a paddy soil chronosequence[J]. Eur J Soil Biol, 2016, 76: 9-18. doi: 10.1016/j.ejsobi.2016.06.002
      [20]
      CHENG Y Q, YANG L Z, CAO Z H, et al. Chronosequential changes of selected pedogenic properties in paddy soils as compared with non-paddy soils[J]. Geoderma, 2009, 151(1/2): 31-41.
      [21]
      LI Z P, ZHANG T L, HAN F X, et al. Changes in soil C and N contents and mineralization across a cultivation chronosequence of paddy fields in subtropical China[J]. Pedosphere, 2005, 15(5): 554-562.
      [22]
      赵兰坡, 王宇, 冯君, 等. 松嫩平原盐碱地改良利用: 理论与技术[M]. 北京: 科学出版社, 2013.
      [23]
      徐晓腾, 赵兰坡. 种稻法对苏打盐碱土改良贡献的研究[J]. 中国农学通报, 2011, 27(12): 130-133.
      [24]
      王巍巍, 魏春雁, 张之鑫, 等. 不同种稻年限盐碱地水田表层土壤酶活性变化及其与土壤养分关系[J]. 东北农业科学, 2016, 41(4): 43-48.
      [25]
      KONG C, XU X, ZHOU B, et al. Two compounds from allelopathic rice accession and their inhibitory activity on weeds and fungal pathogens[J]. Phytochemistry, 2004, 65(8): 1123-1128. doi: 10.1016/j.phytochem.2004.02.017
      [26]
      BACILIO-JIMENEZ M, AGUILAR-FLORES S, VENTURA-ZAPATA E, et al. Chemical characterization of root exudates from rice (Oryza sativa) and their effects on the chemotactic response of endophytic bacteria[J]. Plant Soil, 2003, 249(2): 271-277. doi: 10.1023/A:1022888900465
      [27]
      李忠和. 吉林西部稻田土壤微生物及酶活性对碳变化响应机制研究[D]. 长春: 吉林大学, 2014.
      [28]
      陈丹梅, 袁玲, 黄建国, 等. 长期施肥对南方典型水稻土养分含量及真菌群落的影响[J]. 作物学报, 2017, 43(2): 286-295.
      [29]
      AL-SADI A M, AL-MAZROUI S S, PHILLIPS A J L. Evaluation of culture-based techniques and 454 pyrosequencing for the analysis of fungal diversity in potting media and organic fertilizers[J]. J Appl Microbiol, 2015, 119(2): 500-509. doi: 10.1111/jam.2015.119.issue-2
      [30]
      YELLE D J, RALPH J, LU F C, et al. Evidence for cleavage of lignin by a brown rot basidiomycete[J]. Environ Microbiol, 2008, 10(7): 1844-1849. doi: 10.1111/j.1462-2920.2008.01605.x
      [31]
      FREY S D, KNORR M, PARRENT J L, et al. Chronic nitrogen enrichment affects the structure and function of the soil microbial community in temperate hardwood and pine forests[J]. For Ecol Manage, 2004, 196(1): 159-171. doi: 10.1016/j.foreco.2004.03.018
      [32]
      王艳云, 郭笃发. 黄河三角洲盐碱地土壤真菌多样性[J]. 北方园艺, 2016(18): 185-189.
      [33]
      ZHOU J, JIANG X, ZHOU B K, et al. Thirty four years of nitrogen fertilization decreases fungal diversity and alters fungal community composition in black soil in northeast China[J]. Soil Biol Biochem, 2016, 95: 135-143. doi: 10.1016/j.soilbio.2015.12.012
      [34]
      李鹏, 李永春, 史加亮, 等. 水稻秸秆还田时间对土壤真菌群落结构的影响[J]. 生态学报, 2017, 37(13): 4309-4317.
      [35]
      胡芳, 杜虎, 曾馥平, 等. 典型喀斯特峰丛洼地不同植被恢复对土壤养分含量和微生物多样性的影响[J]. 生态学报, 2018, 38(6): 2170-2179.
    • Cited by

      Periodical cited type(9)

      1. 柯欣,费琪,夏馨蕊,叶建仁,朱丽华. 抗松针褐斑病湿地松胚性愈伤组织诱导及体胚产量影响因素的研究. 南京林业大学学报(自然科学版). 2025(01): 87-94 .
      2. 刘阳,郭文冰,薛蕾,王哲,曾明,欧阳曦,伍彩云,车晓亮. 湿地松抗褐变和易褐变无性系胚性愈伤团的生理生化特征. 林业与环境科学. 2025(01): 9-21 .
      3. 王斯彤,张柏习,王曼,王浩,孟鹏. 樟子松无性系(GS1)胚性愈伤组织的初步诱导. 分子植物育种. 2023(18): 6088-6095 .
      4. 程方,叶建仁. 抗性湿地松胚性愈伤组织的维持与增殖. 绿色科技. 2023(14): 1-7+27 .
      5. 程方,孙婷玉,叶建仁. 抗松针褐斑病湿地松未成熟合子胚胚性愈伤组织的诱导. 南京林业大学学报(自然科学版). 2023(06): 175-182 .
      6. 高启阳,黄宇龙,郭文冰,赵奋成,刘阳. 碳源等因素对湿地松优良无性系胚性愈伤组织增殖的影响. 植物研究. 2022(01): 21-28 .
      7. 胡珊,杨春霞,谷振军,杜强,肖平江,李火根. 火炬松体细胞胚胎发生体系的优化. 林业科学研究. 2022(03): 9-17 .
      8. 徐康,程强强,杨春霞,谷振军,丁伟,李火根. 速生湿地松良种胚性愈伤组织诱导与增殖. 广西植物. 2021(02): 283-291 .
      9. 程子珊,易敏,宋才玲,程强强,黄若,邓诏磊,张莹莹,张露. 湿地松体细胞胚胎发生胚性愈伤组织诱导条件优化. 江西农业大学学报. 2021(05): 1054-1064 .

      Other cited types(5)

    Catalog

      Article views PDF downloads Cited by(14)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return