• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
HU Zhiwei, YANG Hua, LOU Tiantian, HU Gang, XIE Qianqian, HUANG Jiajia. Extraction of pig contour based on fully convolutional networks[J]. Journal of South China Agricultural University, 2018, 39(6): 111-119. DOI: 10.7671/j.issn.1001-411X.2018.06.017
Citation: HU Zhiwei, YANG Hua, LOU Tiantian, HU Gang, XIE Qianqian, HUANG Jiajia. Extraction of pig contour based on fully convolutional networks[J]. Journal of South China Agricultural University, 2018, 39(6): 111-119. DOI: 10.7671/j.issn.1001-411X.2018.06.017

Extraction of pig contour based on fully convolutional networks

More Information
  • Received Date: April 02, 2018
  • Available Online: May 18, 2023
  • Objective 

    To realize non-contacting and low-cost pig contour extraction under the piggery scene.

    Method 

    We took individual pig in the real culture environment as the research object, and proposed a full convolutional neural network model based on the combination of VGG16 and UNET (VGG-UNET model). We adopted the batch processing method in this model to transfer and learn the parameters of VGG16 model. We achieved semantic level segmentation of the image by combining the deep abstract feature and shallow feature in depth via building the duplicate channel. The model was verified on 1 815 datasets of 30 Large White× Landrace pigs. Comparison experiments of different batch sizes were performed, and three groups with the best results were selected to explore the relationship between batch size and the evaluation index.

    Result 

    Through comparison experiments on datasets, the pixel accuracy and mean intersection-over-union of VGG-UNET model were 94.32% and 86.60% respectively, which were 0.89% and 1.67% higher than those of the UNET model. The experiments showed different relationship between the change of different index values and batch size. Batch size had no obvious impact on the convergence rate of the model under this experimental environment. Through comprehensive analysis of PA and MIoU index values under different batch sizes, the VGG-UNET model showed the highest stability and robustness, and it was found to be the best when the batch size was 8.

    Conclusion 

    The VGG-UNET model is effective for accurate and stable extraction of pig contour. Such segmentation result is relatively complete and the model has higher robustness, which can provide a reference for follow-up identification of individual pigs.

  • [1]
    杜晓冬, 滕光辉, 李卓, 等. 典型猪舍光环境下机器视觉图像量化评价及筛选[J]. 农业工程学报, 2017, 33(2): 213-219.
    [2]
    蔡一欣, 马丽, 刘刚. 奶牛隐性乳房炎便携式计算机视觉快速检测系统设计与试验[J]. 农业工程学报, 2017, 33(增刊1): 63-69.
    [3]
    蔡骋, 宋肖肖, 何进荣. 基于计算机视觉的牛脸轮廓提取算法及实现[J]. 农业工程学报, 2017, 33(11): 171-177. doi: 10.11975/j.issn.1002-6819.2017.11.022
    [4]
    何东健, 刘冬, 赵凯旋. 精准畜牧业中动物信息智能感知与行为检测研究进展[J]. 农业机械学报, 2016, 47(5): 231-244.
    [5]
    肖德琴, 冯爱晶, 杨秋妹, 等. 基于视频追踪的猪只运动快速检测方法[J]. 农业机械学报, 2016, 47(10): 351-357. doi: 10.6041/j.issn.1000-1298.2016.10.045
    [6]
    刘同海, 李卓, 滕光辉, 等. 基于RBF神经网络的种猪体重预测[J]. 农业机械学报, 2013, 44(8): 245-249.
    [7]
    纪滨, 朱伟兴, 刘波, 等. 基于脊腹线波动的猪呼吸急促症状视频分析[J]. 农业工程学报, 2011, 27(1): 191-195. doi: 10.3969/j.issn.1002-6819.2011.01.031
    [8]
    闫丽, 沈明霞, 谢秋菊, 等. 哺乳母猪高危动作识别方法研究[J]. 农业机械学报, 2016, 47(1): 266-272.
    [9]
    刘龙申, 沈明霞, 柏广宇, 等. 基于机器视觉的母猪分娩检测方法研究[J]. 农业机械学报, 2014, 45(3): 237-242.
    [10]
    CAO X, WEI Y, WEN F, et al. Face alignment by explicit shape regression[J]. Int J Comput Vision, 2012, 107(2): 2887-2894.
    [11]
    WU S, KAN M, HE Z, et al. Funnel-structured cascade for multi-view face detection with alignment-awareness[J]. Neurocomputing, 2017, 221: 138-145. doi: 10.1016/j.neucom.2016.09.072
    [12]
    张志刚, 周明全, 耿国华. 人脸关键特征点自动标定研究[J]. 计算机工程与应用, 2007, 43(21): 197-198. doi: 10.3321/j.issn:1002-8331.2007.21.060
    [13]
    孙龙清, 李玥, 邹远炳, 等. 基于改进Graph Cut算法的生猪图像分割方法[J]. 农业工程学报, 2017, 33(16): 196-202. doi: 10.11975/j.issn.1002-6819.2017.16.026
    [14]
    朱伟兴, 纪滨, 秦锋. 基于伪球算子边缘模型的猪前景帧检测[J]. 农业工程学报, 2012, 28(12): 189-194. doi: 10.3969/j.issn.1002-6819.2012.12.031
    [15]
    GUO Y, ZHU W, JIAO P, et al. Foreground detection of group-housed pigs based on the combination of mixture of Gaussians using prediction mechanism and threshold segmentation[J]. Biosyst Eng, 2014, 125(3): 98-104.
    [16]
    刘波, 朱伟兴, 霍冠英. 生猪轮廓红外与光学图像的融合算法[J]. 农业工程学报, 2013, 29(17): 113-120. doi: 10.3969/j.issn.1002-6819.2013.17.015
    [17]
    马丽, 纪滨, 刘宏申, 等. 单只猪轮廓图的侧视图识别[J]. 农业工程学报, 2013, 29(10): 168-174.
    [18]
    王林, 董楠. 基于Gabor特征与卷积神经网络的人体轮廓提取[J]. 南京理工大学学报, 2018, 42(1): 89-95.
    [19]
    LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// IEEE. IEEE Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2015: 3431-3440.
    [20]
    KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Commun ACM, 2017, 60(6): 84-90. doi: 10.1145/3098997
    [21]
    RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. Int J Comput Vision, 2015, 115(3): 211-252. doi: 10.1007/s11263-015-0816-y
    [22]
    SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//IEEE. IEEE Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE, 2015: 1-9.
    [23]
    杨阿庆, 薛月菊, 黄华盛, 等. 基于全卷积网络的哺乳母猪图像分割[J]. 农业工程学报, 2017, 33(23): 219-225. doi: 10.11975/j.issn.1002-6819.2017.23.028
    [24]
    赵凯旋, 何东健. 基于卷积神经网络的奶牛个体身份识别方法[J]. 农业工程学报, 2015, 31(5): 181-187. doi: 10.3969/j.issn.1002-6819.2015.05.026
    [25]
    RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks forbiomedical image segmentation[C]// MICCAI. International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich: MICCAI, 2015: 234-241.
    [26]
    GARCIA-GARCIA A, ORTS-ESCOLANO S, OPREA S, et al. A survey on deep learning techniques for image and video semantic segmentation[J]. Appl Soft Comput, 2018, 70: 41-65. doi: 10.1016/j.asoc.2018.05.018
    [27]
    ISOLA P, ZHU J Y, ZHOU T, et al. Image-to-Image translation with conditional adversarial networks[C]//IEEE. IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 5967-5976.

Catalog

    Article views (1597) PDF downloads (1809) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return