Citation: | ZOU Xiaojun, LIE Zhiyang, XUE Li. Effects of NaCl stress on element contents and accumulations of four landscape plant species[J]. Journal of South China Agricultural University, 2018, 39(6): 77-84. DOI: 10.7671/j.issn.1001-411X.2018.06.012 |
To investigate the effects of NaCl stress on element contents and accumulations of Hibiscus rosa-sinensis, Ixora chinensis, Schefflera arboricola and Cordyline fruticosa,
The above four landscape plant species were selected as materials and treated by three NaCl concentrations (0, 0.3% and 0.6%) to analyze the contents and accumulations of Na, Cl, N, P, and K in these plants.
The contents of Na, Cl, N, P, and K in different organs of above landscape plants ranged from 0.30 to 19.66, 0.12 to 25.79, 5.72 to 23.86, 0.92 to 2.86 and 6.77 to 26.67 g·kg–1, respectively. NaCl stress greatly increased Na and Cl contents in different organs of four species. N contents in all organs of H. rosa-sinensis and I. chinensis significantly increased with the increase of NaCl stress concentration. N contents in all organs of S. arboricola and C. fruticosa, P contents in all organs and K contents in leaves and stems of four species varied irregularly. K contents in roots of four species decreased. NaCl stress increased Na accumulations in all organs of four species (except that in roots of S. arboricola), and Cl accumulations in all organs of H. rosa-sinensis, I. chinensisand C. fruticosa, and decreased N accumulations in all organs of four species except that in roots of H. rosa-sinensis, and P and K accumulations of four species. The change ranges of Na and Cl accumulations were greater than those of N, P and K under NaCl stress, and Na and Cl mainly accumulated in leaves and stems. The ratios of K+/Na+ in all plant organs decreased with the increase of NaCl stress concentration except that in roots of C. fruticosa. The decrease ranges of K+/Na+ ratio in leaves and roots of H. rosa-sinensis, S. arboricolaand C. fruticosa were less than those in stems, while those in all organs ofH. rosa-sinensisand S. arboricolawere less compared with I. chinensisandC. fruticosa.
In these four landscape plants, H. rosa-sinensis and S. arboricola have relatively stronger salt-resistance abilities.
[1] |
佘汉基, 李鹏飞, 薛立, 等. 3种园林植物响应盐胁迫的荧光特性[J]. 中南林业科技大学学报, 2017, 37(8): 54-59.
|
[2] |
BATES B, KUNDZEWICZ Z W, WU S, et al. Climate change and water: Technical paper VI[M]. Geneva: Intergovernmental Panel on Climate Change (IPCC), 2008.
|
[3] |
CABOT C, SIBOLE J V, BARCELÓ J, et al. Lessons from crop plants struggling with salinity[J]. Plant Sci, 2014, 226(3): 2-13.
|
[4] |
郑欣颖, 李鹏飞, 薛立, 等. 3种园林植物的抗盐生理研究[J]. 中南林业科技大学学报, 2017, 37(9): 62-67.
|
[5] |
PARIDA A K, DAS A B. Salt tolerance and salinity effects on plants: A review[J]. Ecotoxicol Environ Saf, 2005, 60(3): 324. doi: 10.1016/j.ecoenv.2004.06.010
|
[6] |
TAVAKKOLI E, FATEHI F, COVENTRY S, et al. Additive effects of Na+ and Cl– ions on barley growth under salinity stress[J]. J Exp Bot, 2011, 62(6): 2189-2203. doi: 10.1093/jxb/erq422
|
[7] |
列志旸, 薛立. 盐胁迫对树木生长影响研究综述[J]. 世界林业研究, 2017, 30(3): 30-34.
|
[8] |
KOPITTKE P M. Interactions between Ca, Mg, Na and K: Alleviation of toxicity in saline solutions[J]. Plant Soil, 2012, 352(1/2): 353-362.
|
[9] |
SHAHID M A, BALAL R M, PERVEZ M A, et al. Differential response of pea (Pisum sativum L.) genotypes to salt stress in relation to the growth, physiological attributes antioxidant activity and organic solutes[J]. Aust J Crop Sci, 2012, 6(5): 828-838.
|
[10] |
杨秀艳, 张华新, 张丽, 等. NaCl胁迫对唐古特白刺幼苗生长及离子吸收、运输与分配的影响[J]. 林业科学, 2013, 49(9): 165-171.
|
[11] |
RONG Q, LIU J, CAI Y, et al. Leaf carbon, nitrogen and phosphorus stoichiometry of Tamarix chinensis Lour. in the Laizhou Bay coastal wetland, China[J]. Ecol Eng, 2015, 76: 57-65. doi: 10.1016/j.ecoleng.2014.03.002
|
[12] |
闫道良, 郭予琦. NaCl处理对海滨锦葵N、P和Na+、K+含量及其化学计量特征的影响[J]. 核农学报, 2015, 29(6): 1211-1217.
|
[13] |
李洁, 周彤彤, 薛立. 5个阔叶树种叶片的养分特征分析[J]. 湖南林业科技, 2016, 43(4): 16-20. doi: 10.3969/j.issn.1003-5710.2016.04.004
|
[14] |
郭仁松, 魏红国, 富艳荣, 等. 南疆超高产棉花干物质积累分配与养分吸收运移特征的研究[J]. 新疆农业科学, 2011, 48(3): 410-418.
|
[15] |
何文寿, 马琨, 代晓华, 等. 宁夏马铃薯氮、磷、钾养分的吸收累积特征[J]. 植物营养与肥料学报, 2014, 20(6): 1477-1487.
|
[16] |
刘淑军, 秦道珠, 梁海军, 等. 水稻不同基因型品种养分吸收特性[J]. 中国农学通报, 2015, 31(3): 16-22.
|
[17] |
刘正祥, 张华新, 杨秀艳, 等. NaCl胁迫下沙枣幼苗生长和阳离子吸收、运输与分配特性[J]. 生态学报, 2014, 34(2): 326-336.
|
[18] |
周琦, 祝遵凌. NaCl胁迫对2种鹅耳枥幼苗生长及离子吸收、分配与运输的影响[J]. 北京林业大学学报, 2015, 37(12): 7-16.
|
[19] |
路斌, 侯月敏, 李欣洋, 等. 野皂荚对NaCl胁迫的生理响应及耐盐性[J]. 应用生态学报, 2015, 26(11): 3293-3299.
|
[20] |
於朝广, 李颖, 谢寅峰, 等. NaCl胁迫对中山杉幼苗生长及离子吸收、运输和分配的影响[J]. 植物生理学报, 2016, 52(9): 1379-1388.
|
[21] |
郑欣颖, 张潮, 薛立, 等. 盐胁迫对4种园林植物生理特性的影响[J]. 河北农业大学学报, 2017, 40(6): 44-50.
|
[22] |
蔡金桓, 都成林, 薛立, 等. 盐胁迫对4种园林植物光合特性的影响[J]. 西南林业大学学报, 2017, 37(2): 30-34.
|
[23] |
叶龙华, 黄香兰, 易立飒, 等. 三种花卉植物的叶绿素荧光参数日变化研究[J]. 湖南林业科技, 2013, 40(1): 32-35. doi: 10.3969/j.issn.1003-5710.2013.01.009
|
[24] |
林敏仪, 李定涓. 广州海珠儿童公园立体绿化的景观营造[J]. 广东园林, 2016, 38(3): 29-32. doi: 10.3969/j.issn.1671-2641.2016.03.008
|
[25] |
韦怡凯, 李秋静, 谭广文. 珠三角居住区4种地形的园林植物景观营造探析[J]. 广东园林, 2017, 39(1): 65-70. doi: 10.3969/j.issn.1671-2641.2017.01.014
|
[26] |
杨腾, 段劼, 马履一, 等. 不同氮素用量对文冠果生长、养分积累及转运的影响[J]. 北京林业大学学报, 2014, 36(3): 57-62.
|
[27] |
车宗玺, 刘贤德, 潘欣, 等. 甘肃省典型林区主要优势树种养分含量变化特征分析[J]. 生态环境学报, 2015, 24(2): 237-243.
|
[28] |
王树凤, 胡韵雪, 孙海菁, 等. 盐胁迫对2种栎树苗期生长和根系生长发育的影响[J]. 生态学报, 2014, 34(4): 1021-1029.
|
[29] |
贾新平, 邓衍明, 孙晓波, 等. 盐胁迫对海滨雀稗生长和生理特性的影响[J]. 草业学报, 2015, 24(12): 204-212. doi: 10.11686/cyxb2015028
|
[30] |
周志林, 唐君, 曹清河, 等. NaCl胁迫对甘薯植株体内K+、Na+和Cl–含量及生长的影响[J]. 中国农业科技导报, 2017, 19(4): 17-23.
|
[31] |
GREFEN C, HONSBEIN A, BLATT M R. Ion transport, membrane traffic and cellular volume control[J]. Curr Opin Plant Biol, 2011, 14(3): 332. doi: 10.1016/j.pbi.2011.03.017
|
[32] |
OUESLATI S, KARRAY-BOURAOUI N, ATTIA H, et al. Physiological and antioxidant responses of Mentha pulegium (Pennyroyal) to salt stress[J]. Acta Physiol Planta, 2010, 32(2): 289-296. doi: 10.1007/s11738-009-0406-0
|
[33] |
党晓宏, 高永, 蒙仲举, 等. 3种滨藜属植物幼苗叶片对NaCl胁迫的生理响应[J]. 北京林业大学学报, 2016, 38(10): 48-49.
|
[34] |
LUO Q Y, YU B J, LIU Y L. Stress of Cl– is stronger than that of Na+ on Glycine max seedlings under NaCl stress[J]. J Integrat Agric, 2002, 1(12): 1404-1409.
|
[35] |
杨小菊, 赵昕, 石勇, 等. 盐胁迫对砂蓝刺头不同器官中离子分布的影响[J]. 草业学报, 2013, 22(4): 116-122.
|
[36] |
魏清江, 冯芳芳, 辜青青. 柑橘盐胁迫响应及耐盐机制研究进展[J]. 果树学报, 2015, 32(1): 136-141.
|
[37] |
操庆, 曹海生, 魏晓兰, 等. 盐胁迫对设施土壤微生物量碳氮和酶活性的影响[J]. 水土保持学报, 2015, 29(4): 300-304.
|
[38] |
张立芙, 吴凤芝, 周新刚, 等. 盐胁迫下黄瓜根系分泌物对土壤养分及土壤酶活性的影响[J]. 中国蔬菜, 2009, 1(14): 6-11.
|
[39] |
郭洋, 盛建东, 陈波浪, 等. 3种盐生植物干物质积累与养分吸收特征[J]. 干旱区研究, 2016, 33(1): 144-149.
|
[40] |
吴敏, 薛立, 李燕. 植物盐胁迫适应机制研究进展[J]. 林业科学, 2007, 43(8): 111-117. doi: 10.3321/j.issn:1001-7488.2007.08.019
|
[41] |
蔡金桓, 都成林, 薛立, 等. 3种园林植物的抗盐光合特性[J]. 安徽农业大学学报, 2017, 44(2): 272-276.
|
[42] |
YU X, LIANG C, CHEN J, et al. The effects of salinity stress on morphological characteristics, mineral nutrient accumulation and essential oil yield and composition in Mentha canadensis L.[J]. Sci Hortic, 2015, 197: 579-583. doi: 10.1016/j.scienta.2015.10.023
|
[43] |
覃林波, 蓝珠剑. 尾巨桉和厚荚相思人工林细根主要营养元素贮存量及其季节动态研究[J]. 防护林科技, 2016(2): 43-44.
|