• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
LI Dengfeng, ZHANG Jiaen, LIU Ziqiang, WANG Chi, YUAN Ai, WEI Hui. Effects of simulated nitrogen deposition on litterfall carbon and nitrogen fractions in a monsoon evergreen broad-leaved forest[J]. Journal of South China Agricultural University, 2018, 39(6): 70-76. DOI: 10.7671/j.issn.1001-411X.2018.06.011
Citation: LI Dengfeng, ZHANG Jiaen, LIU Ziqiang, WANG Chi, YUAN Ai, WEI Hui. Effects of simulated nitrogen deposition on litterfall carbon and nitrogen fractions in a monsoon evergreen broad-leaved forest[J]. Journal of South China Agricultural University, 2018, 39(6): 70-76. DOI: 10.7671/j.issn.1001-411X.2018.06.011

Effects of simulated nitrogen deposition on litterfall carbon and nitrogen fractions in a monsoon evergreen broad-leaved forest

More Information
  • Received Date: March 17, 2018
  • Available Online: May 18, 2023
  • Objective 

    To investigate responses of litterfall carbon (C) and nitrogen (N) fractions to atmospheric N deposition in a monsoon evergreen broad-leaved forest.

    Method 

    Three levels of N addition, including low N (LN, 35 kg·hm–2), medium N (MN, 70 kg·hm–2) and high N (HN, 105 kg·hm–2), were conducted for two years, with a control without extra N addition (CK). Fresh litterfall samples were collected in the dry and wet seasons, respectively. C and N fraction contents were analyzed.

    Result 

    N additions significantly increased the contents of total organic carbon (TOC) and water-soluble organic carbon (WSOC) in the wet season, with the WSOC/TOC ratio presenting a rising trend. N additions did not significantly alter acid-insoluble fraction carbon (AIFC) content and its proportion to TOC, although a decreasing trend was observed compared with the control. Different N addition treatments did not significantly change the contents of litterfall total nitrogen (TN), water-soluble nitrogen (WSN) and acid-insoluble fraction nitrogen (AIFN). The proportions of WSN and AIFN to TN were not altered significantly either. The short-term N additions did not significantly affect litterfall C/N ratio and AIFC/AIFN ratio, but significantly increased WSOC/WSN ratio in the dry season.

    Conclusion 

    The atmospheric N deposition promotes labile C accumulation and therefore is beneficial for litterfall decomposition to transfer nutrients into soil, which will further affect nutrient cycling in the tropical forest.

  • [1]
    LIU X J, DUAN L, MO J M, et al. Nitrogen deposition and its ecological impact in China: An overview[J]. Environ Pollut, 2011, 159(10): 2251-2264.
    [2]
    谢迎新, 张淑利, 冯伟, 等. 大气氮素沉降研究进展[J]. 中国生态农业学报, 2010, 18(4): 897-904.
    [3]
    GALLOWAY J N, DENTENER F J, CAPONE D G, et al. Nitrogen cycles: Past, present, and future[J]. Biogeochemistry, 2004, 70(2): 153-226.
    [4]
    GALLOWAY J N, ABER J D, ERISMAN J W, et al. The nitrogen cascade[J]. Bioscience, 2003, 53(4): 341-356.
    [5]
    鲁显楷, 莫江明, 董少峰. 氮沉降对森林生物多样性的影响[J]. 生态学报, 2008, 28(11): 5532-5548.
    [6]
    MARKLEIN A R, HOULTON B Z. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems[J]. New Phytol, 2012, 193(3): 696-704.
    [7]
    LIU X J, ZHANG Y, HAN W X, et al. Enhanced nitrogen deposition over China[J]. Nature, 2013, 494(7438): 459-462.
    [8]
    FANG Y T, GUNDERSEN P, MO J M, et al. Input and output of dissolved organic and inorganic nitrogen in subtropical forests of South China under high air pollution[J]. Biogeosciences, 2008, 5(2): 339-352.
    [9]
    SPARKS J P, WALKER J, TURNIPSEED A, et al. Dry nitrogen deposition estimates over a forest experiencing free air CO2 enrichment[J]. Global Change Biol, 2008, 14(4): 768-781.
    [10]
    FAGERLI H, AAS W. Trends of nitrogen in air and precipitation: Model results and observations at EMEP sites in Europe, 1980-2003[J]. Environ Pollut, 2008, 154(3): 448-461.
    [11]
    莫江明, 薛璟花, 方运霆. 鼎湖山主要森林植物凋落物分解及其对N沉降的响应[J]. 生态学报, 2004, 24(7): 1413-1420.
    [12]
    郑金兴, 杨智杰, 凌华, 等. 楠木人工林凋落物的产量与月动态[J]. 福建师范大学学报(自然科学版), 2011, 27(1): 88-92.
    [13]
    HE Z M, CHEN G S, LIU J B, et al. Relationships among litter production, decomposition and accumulation in Chinese fir plantation[J]. Chin J Appl Environ Biol, 2003, 9(4): 352-356.
    [14]
    LIMPENS J, BERENDSE F. How litter quality affects mass loss and N loss from decomposing Sphagnum[J]. Oikos, 2003, 103(3): 537-547.
    [15]
    VESTGARDEN L S. Carbon and nitrogen turnover in the early stage of Scots pine (Pinus sylvestris L.) needle litter decomposition: Effects of internal and external nitrogen[J]. Soil Biol Biochem, 2001, 33(4/5): 465-474.
    [16]
    徐国良, 莫江明, 周国逸, 等. 氮沉降下鼎湖山森林凋落物分解及与土壤动物的关系[J]. 生态环境, 2005, 14(6): 901-907.
    [17]
    鲁显楷, 莫江明, 李德军, 等. 鼎湖山主要林下层植物光合生理特性对模拟氮沉降的响应[J]. 北京林业大学学报, 2007, 29(6): 1-9.
    [18]
    吕国红, 周广胜, 周莉, 等. 土壤溶解性有机碳测定方法与应用[J]. 气象与环境学报, 2006, 22(2): 51-55.
    [19]
    周美珩, 龚建美, 段文标, 等. 林隙与凋落物对天然红松混交林土壤水溶性有机碳的影响[J]. 水土保持学报, 2014, 28(2): 232-237.
    [20]
    RYAN M G, MELILLO J M, RICCA A. A comparison of methods for determining proximate carbon fractions of forest litter[J]. Can J Forest Res, 1990, 20(2): 166-171.
    [21]
    LI D J, MO J M, PENG S L, et al. Effects of simulated nitrogen deposition on elemental concentrations of Schima superba and Cryptocarya concinna seedlings in subtropical China[J]. Acta Ecol Sin, 2005, 25(9): 2165-2172.
    [22]
    KOZOVITS A R, BUSTAMANTE M M C, GAROFALO C R, et al. Nutrient resorption and patterns of litter production and decomposition in a Neotropical Savanna[J]. Funct Ecol, 2007, 21(6): 1034-1043.
    [23]
    LI D D, TIAN M Y, CAI J, et al. Effects of low nitrogen supply on relationships between photosynthesis and nitrogen status at different leaf position in wheat seedlings[J]. Plant Growth Regul, 2013, 70(3): 257-263.
    [24]
    XIA J Y, WAN S Q. Global response patterns of terrestrial plant species to nitrogen addition[J]. New Phytol, 2008, 179(2): 428-439.
    [25]
    LU X K, MO J M, GILLIAM F S, et al. Nitrogen addition shapes soil phosphorus availability in two reforested tropical forests in Southern China[J]. Bio tropica, 2012, 44(3): 302-311.
    [26]
    MERON D, ATIAS E, KRUH L I, et al. The impact of reduced pH on the microbial community of the coral Acropora eurystoma[J]. Isme J, 2011, 5(1): 51-60.
    [27]
    王晶苑, 张心昱, 温学发, 等. 氮沉降对森林土壤有机质和凋落物分解的影响及其微生物学机制[J]. 生态学报, 2013, 33(5): 1337-1346.
    [28]
    PENG S L, LIU Q. The dynamics of forest litter and its responses to global warming[J]. Acta Ecol Sin, 2002, 22(9): 1534-1544.
    [29]
    全权, 张震, 何念鹏, 等. 短期氮添加对东灵山三种森林土壤呼吸的影响[J]. 生态学杂志, 2015, 34(3): 797-804.
    [30]
    MA Y C, ZHU B, SUN Z Z, et al. The effects of simulated nitrogen deposition on extracellular enzyme activities of litter and soil among different-aged stands of larch[J]. J Plant Ecol, 2014, 7(3): 240-249.
    [31]
    ZHOU S X, HUANG C D, XIANG Y B, et al. Response of carbon and nitrogen release to simulated nitrogen deposition in natural evergreen broad-leaved forests in a rainy area in Western China[J]. Acta Ecol Sin, 2017, 37(4): 258-264.
    [32]
    赵晶, 闫文德, 郑威, 等. 樟树人工林凋落物养分含量及归还量对氮沉降的响应[J]. 生态学报, 2016, 36(2): 350-359.
    [33]
    FAN H B, YUAN Y H, WANG Q, et al. Effects of nitrogen deposition on soil organic carbon and total nitrogen beneath Chinese fir plantations[J]. J Fujian College Forestry, 2007.
    [34]
    BERG B, MCCLAUGHERTY C. Plant litter: Decomposition, humus formation, carbon sequestration[M]. Berlin Heidelberg: Springer-Verlag, 2014.
    [35]
    李巧玲, 曾辉. 美国南卡罗来纳州森林湿地十种典型植物凋落叶的分解特征[J]. 生态学报, 2017, 37(7): 2342-2351.
    [36]
    CARTER D O, YELLOWLEES D, TIBBETT M. Cadaver decomposition in terrestrial ecosystems[J]. Naturwissenschaften, 2007, 94(1): 12-24.
    [37]
    向元彬. 模拟氮沉降和降雨量改变对华西雨屏区常绿阔叶林土壤碳氮特征的影响[D]. 雅安: 四川农业大学, 2016.
    [38]
    BOXMAN A W, VEN P J M, ROELOFS J G M. Ecosystem recovery after a decrease in nitrogen input to a Scots pine stand at Ysselsteyn, the Netherlands[J]. Forest Ecol Manag, 1998, 101(1): 155-163.
    [39]
    李德军, 莫江明, 方运霆, 等. 氮沉降对森林植物的影响[J]. 生态学报, 2003, 23(9): 1891-1900.
    [40]
    HESSEN D O, AGREN G I, ANDERSON T R, et al. Carbon, sequestration in ecosystems: The role of stoichiometry[J]. Ecology, 2004, 85(5): 1179-1192.

Catalog

    Article views (1392) PDF downloads (1448) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return