Citation: | BAI Ruyue, WANG Xiaochan, LU Wei, LI Chengguang, Morice O. ODHIAMBO. Design and experiment of row-following pesticide spraying system by robot[J]. Journal of South China Agricultural University, 2018, 39(5): 101-109. DOI: 10.7671/j.issn.1001-411X.2018.05.015 |
To realize the automatic walk and uniform application of mobile robot in the greenhouse, a kind of spraying robot capable of navigating autonomously between crop lines was designed.
Aiming at the problem that the recognition of navigation path was greatly affected by light changes, HIS space was selected from the color images acquired by Kinect camera. The clustering center and number were optimized for K-means algorithm. Using the improved K-means algorithm, the components of H and S were segmented and the complete road information was obtained. The method of Candy operator was used to detect the edge, and the method of improved Hough change was used to fit the navigation path. The method of fuzzy control was used to correct robot walking offset by adjusting the rotating angle and turn in real time. A self-tuning fuzzy PID control algorithm was selected for this spraying system to meet application requirements of different crops.
The system could effectively adapt to different light conditions. On average, it took 12.36 ms to extract the center line of crop. The navigation deviation does not exceed 5 cm. The coverage rate of plant leaves on upper, middle and lower layers was 63.26%, 50.89% and 75.82% respectively, and the droplet number per square centimeter was 55, 42 and 78 respectively.
This system can meet the need of pesticide application of mobile robot to prevent pests and diseases in greenhouse.
[1] |
TORII T. Research in autonomous agriculture vehicles in Japan[J]. Comput Electron Agr, 2000, 25(1/2): 133-153.
|
[2] |
沈成杰. 变量喷雾系统设计及喷雾流量控制特性试验研究[D]. 镇江: 江苏大学, 2009.
|
[3] |
SINGH S, BURKS T F, LEE W S. Autonomous robotic vehicle development for greenhouse spraying[J]. Trans ASAE, 2005, 48(6): 2355-2361.
|
[4] |
李佐鹏. 喷雾机器人超声定位及变量喷雾试验研究[D]. 镇江: 江苏大学, 2007.
|
[5] |
张波. 田间自走式对行喷雾机器人控制系统设计[D]. 杨凌: 西北农林科技大学, 2017.
|
[6] |
JASIŃSKI M, MĄCZAK J, RADKOWSKI S, et al. Autonomous agricultural robot: Conception of inertial navigation system[C]//ROMAN S, MAŁGORZATA K, CEZARY Z. Challenges in automation, robotics and measurement techniques. Warsaw: Springer International Publishing, 2016: 669-679.
|
[7] |
SHARMA S, BORSE R. Automatic agriculture spraying robot with smart decision making[C]//CORCHADO R J. The international symposium on intelligent systems technologies and applications. Jaipur: Springer International Publishing, 2016: 743-758.
|
[8] |
刁智华, 刁春迎, 魏玉泉, 等. 机器人系统中小麦病害识别与施药算法研究[J]. 江苏农业科学, 2017, 45(17): 192-195.
|
[9] |
张铁民, 李辉辉, 陈大为, 等. 多源传感器信息融合的农用小车路径跟踪导航系统[J]. 农业机械学报, 2015, 46(3): 37-42.
|
[10] |
兰小艳, 陈莉, 贾建, 李熠晨, 等. 基于小波和PCA的自适应颜色空间彩色图像去噪[J]. 计算机应用研究, 2018, 35(3): 934-939.
|
[11] |
虎晓红, 李炳军, 刘芳. 多颜色空间中玉米叶部病害图像图论分割方法[J]. 农业机械学报, 2013, 44(2): 177-181.
|
[12] |
庞晓敏, 闵子建, 阚江明. 基于HSI和LAB颜色空间的彩色图像分割[J]. 广西大学学报(自然科学版), 2011, 36(6): 976-980.
|
[13] |
高国琴, 李明. 基于K-means算法的温室移动机器人导航路径识别[J]. 农业工程学报, 2014, 30(7): 25-33.
|
[14] |
王新忠. 温室番茄收获机器人选择性收获作业信息获取与路径规划研究[D]. 镇江: 江苏大学, 2012.
|
[15] |
王新忠, 韩旭, 毛罕平, 等. 基于最小二乘法的温室番茄垄间视觉导航路径检测[J]. 农业机械学报, 2012, 43(6): 161-166.
|
[16] |
徐黎明,吕继东. 基于同态滤波和K均值聚类算法的杨梅图像分割[J]. 农业工程学报, 2015, 31(14): 202-208.
|
[17] |
刁智华, 王欢, 宋寅卯, 等. 复杂背景下棉花病叶害螨图像分割方法[J]. 农业工程学报, 2013, 29(5): 147-152.
|
[18] |
任永新, 谭豫之, 杨会华, 等. 基于模糊控制的黄瓜采摘机器人视觉导航[J]. 江苏大学学报(自然科学版), 2009, 30(4): 343-346.
|
[19] |
董志明,宋乐鹏. 基于PLC控制的模糊自整定PID变量喷雾控制系统[J]. 山东农业大学学报(自然科学版), 2014, 45(4): 536-540.
|
[20] |
宋淑然, 阮耀灿, 洪添胜, 等. 果园管道喷雾系统药液压力的自整定模糊PID控制[J]. 农业工程学报, 2011, 27(6): 157-161.
|
[21] |
宋乐鹏, 董志明, 向李娟, 等. 变量喷雾流量阀的变论域自适应模糊PID控制[J]. 农业工程学报, 2010, 26(11): 114-118.
|
[22] |
戴俊珂, 姜海明, 钟奇润, 等. 基于自整定模糊PID算法的LD温度控制系统[J]. 红外与激光工程, 2014, 43(10): 3287-3291.
|
[23] |
尹振波. 喷雾系统的设计及喷雾机器人自主作业的研究[D].北京: 北京林业大学,2012.
|