Citation: | QI Jiamin, XU Yilin, ZHANG Peng, XI Ruchun, LU Chen, GAO Le. Photosynthetic and carbon sequestration characteristics of three rare and endangered species of Magnoliaceae[J]. Journal of South China Agricultural University, 2018, 39(3): 90-95. DOI: 10.7671/j.issn.1001-411X.2018.03.014 |
To illuminate the photosynthetic and carbon sequestration characteristics of rare and endangered species of Magnoliaceae, and provide theory and technology bases for their conservation and utilization.
Manglietia aromatica, M. lucida and M. kaifui were studied with LI-6400 portable photosynthetic system measuring photosynthetic characteristics. Their carbon sequestration and oxygen release amounts were estimated to evaluate comprehensively their adaptabilities and ecological effects.
The diurnal variations of net photosynthetic rates of three species displayed bimodal curves with obvious midday depression in July and unimodal curves in October. The daily mean values of net photosynthetic rates of three species in July were 5.35 μmol·m–2·s–1 (M. kaifui), 2.87 μmol·m–2·s–1 (M. lucida) and 2.78 μmol·m–2·s–1 (M. aromatica) successively, and the values in October were 6.46 μmol·m–2·s–1 (M. kaifui), 6.24 μmol·m–2·s–1 (M. aromatica) and 5.74 μmol·m–2·s–1 (M. lucida) respectively. The carbon sequestration and oxygen release amount of three species was in order of M. kaifui>M. aromatica>M. lucida.
The test plants display more vigorous growth in October than July. M. kaifui has the best capacity of utilizing strong light while M. aromatica has the best capacity of utilizing weak light. M. kaifui has the best carbon sequesteration and oxygen release abilities among three species.
[1] |
刘玉壶, 夏念和, 杨惠秋. 木兰科(Magnoliaceae)的起源、进化和地理分布[J]. 热带亚热带植物学报, 1995, 4(3): 1-12.
|
[2] |
PAN C, ZHU X Y, JIA W X, et al. Near surface CO2 concentration and its quantitative relationship with underlying surface in Shanghai City, China[J]. J Appl Ecol, 2015, 26(7): 2123-2130.
|
[3] |
许大全. 光合作用效率[M]. 上海: 上海科学技术出版社, 2002.
|
[4] |
王强, 金则新, 郭水良, 等. 濒危植物长叶榧的光合生理生态特性[J]. 生态学报, 2014, 34(22): 6460-6470.
|
[5] |
LI S, PEZESHKI S R, GOODWIN S. Effects of soil moisture regimes on photosynthesis and growth in cattail (Typha latifolia)[J]. Acta Oecol, 2004, 25(1): 17-22.
|
[6] |
FANG J Y, CHEN A P. Dynamic forest biomass carbon pools in China and their significance[J]. Acta Botanica Sinica, 2001, 43(9): 967-973.
|
[7] |
郭起荣, 俞志雄, 施建敏. 华木莲与木莲属两树种光合生理生态研究[J]. 江西农业大学学报, 2003, 25(5): 645-651.
|
[8] |
朱贤良, 严理, 秦武明, 等. 4种木莲幼苗生长特性与光合生理研究[J]. 山西农业科学, 2014, 42(11): 1163-1168.
|
[9] |
李芸瑛, 窦新永, 彭长连. 三种濒危木兰植物幼树光合特性对高温的响应[J]. 生态学报, 2008, 28(8): 3789-3797.
|
[10] |
吴永彬, 冯志坚. 华南农业大学树木园稀有濒危植物和国家重点保护植物的迁地保护[J]. 华南农业大学学报, 2006, 27(3): 118-121.
|
[11] |
国家林业局, 国家农业部. 国家重点保护野生植物名录(第一批)[Z]. 1999-08-04.
|
[12] |
莫亚鹰, 余金良, 黎念林, 等. 九种木兰科常绿树种的光合与固碳特性研究[J]. 北方园艺, 2016(17): 82-86.
|
[13] |
FARQUHAR G D, VON CAEMMERER S, BERRY J A. Models of photosynthesis[J]. Plant Physiol, 2001, 125(1): 42-45.
|
[14] |
叶子飘, 王建林. 植物光合–光响应模型的比较分析[J]. 井冈山学院学报, 2009, 30(4): 9-13.
|
[15] |
李梦. 木兰科几种常用绿化树种光合特性及固碳能力研究[D]. 杭州: 浙江农林大学, 2014.
|
[16] |
FARQUHAR G D, VON CAEMMERERS S, BERRY J A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species[J]. Planta, 1980, 149(1): 78-90.
|
[17] |
王倩. 北美鹅掌楸优良无性系光合特性研究[D]. 泰安: 山东农业大学, 2016.
|
[18] |
GOUDRIAAN J. A simple and fast numerical method for the computation of daily totals of crop photosynthesis[J]. Agric Forest Meteorol, 1986, 38(1): 249-254.
|
[19] |
白文明, 包雪梅. 乌兰布和沙区紫花苜蓿生长发育模拟研究[J]. 应用生态学报, 2002, 13(12): 1605-1609.
|
[20] |
王海珍, 韩路, 徐雅丽, 等. 干旱胁迫下胡杨光合光响应过程模拟与模型比较[J]. 生态学报, 2017, 37(7): 2-10.
|