Citation: | LIN Wei, ZHOU Wei, ZHOU Peng, ZHOU Xiangbin, WU Linying, CHEN Xiaoyang. Genetic diversity of Zenia insignis based on SRAP markers[J]. Journal of South China Agricultural University, 2017, 38(1): 82-89. DOI: 10.7671/j.issn.1001-411X.2017.01.014 |
To study population genetic diversity of Zenia insignis, and to provide a basis for Z. insignis germplasm protect and promote genetic improvement.
Base on establishing of SRAP-PCR system in Z. insignis, the genetic diversity among 17 provenances was analyzed. UPGMA clustering analysis was used to divide Z. insignis provenances into different groups.
A total of 151 bands were amplified from 12 primer pairs, and in average 12.58 bands were amplified from each primer pair. There were 106 polymorphic bands, in average 8.83 bands per primer sets, and the average percentage of polymorphic bands was 70.39%. The ratios of polymorphic loci among provenances were 38.96%-72.73%, and 59.66% in average. The genetic diversity indices were 0.175 5-0.313 3, and 0.256 8 in average. The Shannon information indices were 0.249 4-0.450 2, and 0.369 1 in average. The numbers of alleles (na) observed were 1.519 5-1.727 3, and 1.600 0 in average. The number of alleles (na) at the provenance level was 1.724 9. The numbers of effective alleles (ne) were 1.330 5-1.577 3, and 1.4713 in average. The number of effective alleles (ne) at the provenance level was 1.502 6. The genetic identity degrees among provenances were 0.703 1-0.886 5.The genetic distances were 0.120 5-0.352 3. According to cluster analysis, 17 provenances were divided into three groups. The first group included Guangxi and Guizhou provenances. The second group included Guangdong, Hunan and Guangxi provenances. The third group only included Yunnan provenance. The provenances with geographic proximity were generally clustered into the same group.
The genetic diversity is abundant among Z. insignis provenances and among individuals within provenance, but is mainly from individuals within provenance. Therefore more attention should be paid to individuals in genetic improvement of Z. insignis. Both the low level of gene flow among provenances and three clear geographic clustering should be caused by the geographic isolation due to the specific living environment of Z.insignis.
[1] |
何小勇. 翅荚木种源遗传多样性及其抗低温胁迫能力研究[D]. 长沙: 中南林业大学, 2007. http://cdmd.cnki.com.cn/Article/CDMD-10538-1011063668.htm
|
[2] |
陈永密.珍稀树种:翅荚木[M].福州:福建教育出版社, 1989.
|
[3] |
侯伦灯, 李玉曹, 李平宇, 等.任豆树综合利用研究[J].林业科学, 2010, 37(3):139-143. doi: 10.11707/j.1001-7488.20100322
|
[4] |
范霭萱, 梁兆彦, 宋喜宣.可开发的木本饲料[J].广西畜牧兽医, 1995, 11(2):20-23. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGLY701.025.htm
|
[5] |
郑学项, 冯素萍, 李维国. DNA分子标记研究进展[J].安徽农业科学, 2009, 37(26):12420-12422. doi: 10.3969/j.issn.0517-6611.2009.26.026
|
[6] |
陈丽君, 刘明骞, 廖柏勇, 等.苦楝SRAP-PCR反应体系的建立及优化[J].华南农业大学学报, 2015, 36(3):104-108. doi: 10.7671/j.issn.1672-0202.2015.03.011
|
[7] |
LI G, QUIROS C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: Its application to mapping and gene tagging in Brassica [J]. Theor Appl Genet, 2001, 103(103):455-461. doi: 10.1007/s001220100570
|
[8] |
NEI M. Molecular evolutionary genetics[M]. New York: Columbia University Press, 1987.
|
[9] |
MANTEL N. The detection of disease clustering and a generalized regression approach[J]. Cancer Res, 1967, 27(2):209-220. http://cancerres.aacrjournals.org/content/27/2_Part_1/209?cited-by=yesl27/2_Part_1/209
|
[10] |
沈俊岭, 倪慧群, 陈晓阳, 等.麻疯树遗传多样性的相关序列扩增多态性(SRAP)分析[J].浙江林学院学报, 2010, 27(3):347-353. http://www.cnki.com.cn/Article/CJFDTOTAL-ZJLX201003007.htm
|
[11] |
祝全东, 张党权, 李晓云, 等.油茶SRAP标记的PCR体系建立与优化[J].中南林业科技大学学报, 2010, 30(3):57-62. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNLB201003013.htm
|
[12] |
谭碧玥, 王源秀, 徐立安.杨树基因组SRAP扩增体系的建立与优化[J].林业科技开发, 2009, 23(2):25-29. http://www.cnki.com.cn/Article/CJFDTOTAL-LKKF200902009.htm
|
[13] |
徐斌, 张方秋, 潘文, 等.我国红锥天然群体的遗传多样性和遗传结构[J].林业科学, 2013, 49(10):162-166. http://www.cnki.com.cn/Article/CJFDTOTAL-LYKE201310025.htm
|
[14] |
黄勇.基于SRAP分子标记的小果油茶遗传多样性分析[J].林业科学, 2013, 49(3):43-50. doi: 10.11707/j.1001-7488.20130306
|
[15] |
李楠, 柳新红, 李因刚, 等.白花树天然群体的遗传多样性[J].林业科学, 2012, 48(11):49-56. doi: 10.11707/j.1001-7488.20121108
|
[16] |
王玉山, 邢世岩, 唐海霞, 等.侧柏种源遗传多样性分析[J].林业科学, 2011, 47(2):90-96. http://www.cnki.com.cn/Article/CJFDTOTAL-LYKE201107016.htm
|
[17] |
唐琴, 曾秀丽, 廖明安, 等.大花黄牡丹遗传多样性的SRAP分析[J].林业科学, 2012, 48(1):70-76. doi: 10.11707/j.1001-7488.20120112
|
[18] |
刘志远, 范卫红, 沈世华.构树SRAP分子标记[J].林业科学, 2009, 45(12):54-58. doi: 10.11707/j.1001-7488.20091209
|
[19] |
HAMRICK J L, GODT M J W, SHERMAN-BRNYES S L. Factors influencing levels of genetic diversity in woody plant species[J].New Forests, 1992, 42(6):95-124. doi: 10.1007/978-94-011-2815-5_7
|
[20] |
HAMRICK J L. Isozymes and the analysis of genetic structure in plant populations[C] //SOHIS D E, SOHIS P S.Isozymes in plant biology. London: Chapman and Hall, 1990:87-105. doi: 10.1007/978-94-009-1840-5_5
|
[21] |
刘华波, 王哲, 刘君, 等.燕山山脉西伯利亚杏的遗传多样性和遗传结构[J].林业科学研究, 2012, 48(8):68-74. http://www.cnki.com.cn/Article/CJFDTOTAL-LYKE201208013.htm
|
[22] |
郑健, 郑勇奇, 张川红, 等.花楸树天然群体的遗传多样性研究[J].生物多样性, 2008, 16(6): 562-569. http://www.cnki.com.cn/Article/CJFDTOTAL-SWDY200806007.htm
|
[23] |
张文标, 金则新, 李钧敏.濒危植物香果树自然居群遗传多样性的RAPD分析[J].浙江大学学报(农业与生命科学版), 2007, 33(1):61-67. http://www.cnki.com.cn/Article/CJFDTOTAL-ZJNY200701010.htm
|
[24] |
明军, 顾万春.紫丁香天然群体遗传多样性的AFLP分析[J].园艺学报, 2006, 33(6):1269-1274. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-EGYP200511001131.htm
|
[25] |
徐小林, 徐立安, 黄敏仁, 等.栓皮栎天然群体SSR遗传多样性研究[J].遗传, 2004, 26(5):683-688. http://www.cnki.com.cn/Article/CJFDTOTAL-YCZZ200405023.htm
|