• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
LIU Ziji, NIU Yu, ZHU Jie, LIU Zhaohua, YANG Yan. Comparison of different methods to construct core collections of Momordica charantia[J]. Journal of South China Agricultural University, 2017, 38(1): 31-37. DOI: 10.7671/j.issn.1001-411X.2017.01.006
Citation: LIU Ziji, NIU Yu, ZHU Jie, LIU Zhaohua, YANG Yan. Comparison of different methods to construct core collections of Momordica charantia[J]. Journal of South China Agricultural University, 2017, 38(1): 31-37. DOI: 10.7671/j.issn.1001-411X.2017.01.006

Comparison of different methods to construct core collections of Momordica charantia

More Information
  • Received Date: February 24, 2016
  • Available Online: May 17, 2023
  • Objective 

    To construct core collections of bitter gourd (Momordica charantia) which can represent the genetic diversity of the initial population by comparing different construction methods, and facilitate the efficient utilization of bitter gourd germplasm.

    Method 

    We sampled 154 bitter gourd germplasm as materials, predicted the genotypic values of five traits (node bearing first female flower, fruit length, fruit width, flesh thickness and mass per fruit) without bias using mixed linear model analysis, calculated the genetic distances among bitter gourd germplasm based on genotypic values of all five traits using Mahalanobis distance, and constructed core collections with 30% sampling proportion by using eight different clustering methods and three different sampling strategies. The quality of core collections constructed using different clustering methods and sampling strategies were evaluated.

    Result 

    The variation coefficients of all five traits of the core collections constructed with eight clustering methods were larger than those of the initial population. Single linkage was better compared to the other seven clustering methods by significantly increasing the variances and coefficients of variation for all five traits. The ranges of core collections constructed with preferred sampling and deviation sampling were consistent with those of the initial population. The variation coefficients of three traits of the core collection from deviation sampling were larger compared to the other two sampling methods, indicating that deviation sampling was slightly better than random sampling and preferred sampling. Forty six core collections of bitter gourd were obtained based on Mahalanobis distance, deviation sampling and single linkage. Among them, Y5, Y87, Y112 and Y139 were the backbone materials.

    Conclusion 

    The 46 core collections of bitter gourd, which were obtained based on Mahalanobis distance, deviation sampling and single linkage, can well represent the genetic diversity of the initial population. This study further provides evidence for high genetic diversity in the bitter gourd germplasm from India and Southeast Asian. Our results provide an important theoretical basis for the collection, evaluation and efficient utilization of bitter gourd genetic resources.

  • [1]
    FANG E F, NG T B. Bitter gourd (Momordica charantia) is a cornucopia of health: A review of its credited antidiabetic, anti-HIV, and antitumor properties[J]. Curr Mol Med, 2011, 11 (5): 417-436. doi: 10.2174/156652411795976583
    [2]
    SCHAEFER H, RENNER S S. A three-genome phylogeny of Momordica (Cucurbitaceae) suggests seven returns from dioecy to monoecy and recent long-distance dispersal to Asia[J]. Mol Phylogenet Evol, 2010, 54 (2): 553-560. doi: 10.1016/j.ympev.2009.08.006
    [3]
    YANG S J, CHOI J M, PARK S E, et al. Preventive effects of bitter melon (Momordica charantia) against insulin resistance and diabetes are associated with the inhibition of NF-κB and JNK pathways in high-fat-fed OLETF rats[J]. J Nutr Biochem, 2015, 26(3): 234-240. doi: 10.1016/j.jnutbio.2014.10.010
    [4]
    CAO D, SUN Y, WANG L, et al. Alpha-momorcharin (α-MMC) exerts effective anti-human breast tumor activities but has a narrow therapeutic window in vivo[J]. Fitoterapia, 2015, 100: 139-149. doi: 10.1016/j.fitote.2014.11.009
    [5]
    PANDA B C, MONDAL S, DEVI K S, et al. Pectic polysaccharide from the green fruits of Momordica charantia (Karela): Structural characterization and study of immunoenhancing and antioxidant properties[J]. Carbohydr Res, 2015, 401: 24-31. doi: 10.1016/j.carres.2014.10.015
    [6]
    LIAW C C, HUANG H C, HSIAO P C, et al. 5β, 19-epoxycucurbitane triterpenoids from Momordica charantia and their anti-inflammatory and cytotoxic activity[J]. Planta Med, 2015, 81(1): 62-70.
    [7]
    陈世儒.蔬菜育种学[M].北京:农业出版社, 1980.
    [8]
    温庆放, 李大忠, 朱海生, 等.不同来源苦瓜遗传亲缘关系RAPD分析[J].福建农业学报, 2005, 20(3):185-188. http://www.cnki.com.cn/Article/CJFDTOTAL-FJNX200503014.htm
    [9]
    张长远, 孙妮, 胡开林.苦瓜品种亲缘关系的RAPD分析[J].分子植物育种, 2005, 3(4):515-519. http://www.cnki.com.cn/Article/CJFDTOTAL-FZZW200504015.htm
    [10]
    黄如葵, 孙德利, 张曼, 等.苦瓜遗传多样性的形态学性状聚类分析[J].广西农业科学, 2008, 39(3):351-356. http://www.cnki.com.cn/Article/CJFDTOTAL-GXNY200803022.htm
    [11]
    杨衍, 刘昭华, 詹园凤, 等.苦瓜种质资源遗传多样性的AFLP分析[J].热带作物学报, 2009, 30(3):299-303. http://www.cnki.com.cn/Article/CJFDTOTAL-RDZX200903011.htm
    [12]
    康建坂, 朱海生, 李大忠, 等.应用ISSR技术分析苦瓜种质资源的多态性[J].福建农业学报, 2010, 25(5):597-601. http://www.cnki.com.cn/Article/CJFDTOTAL-FJNX201005013.htm
    [13]
    张凤银, 陈禅友, 胡志辉, 等.苦瓜种质资源的形态学性状和营养成分的多样性分析[J].中国农学通报, 2011, 27(4):183-188. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201104037.htm
    [14]
    陈禅友, 兰红, 李亚木, 等.苦瓜种质资源ISSR遗传多态性分析[J].长江蔬菜, 2012(12):19-22. http://www.cnki.com.cn/Article/CJFDTOTAL-CJSC201212008.htm
    [15]
    周坤华, 张长远, 罗剑宁, 等.苦瓜种质资源遗传多样性的SRAP分析[J].广东农业科学, 2013(21):136-140. doi: 10.3969/j.issn.1004-874X.2013.21.036
    [16]
    张燕, 杨衍, 田丽波, 等.基于表型性状的苦瓜种质资源评价和遗传多样性的分析[J].分子植物育种, 2016, 14(1):239-250. http://www.cnki.com.cn/Article/CJFDTOTAL-FZZW201601045.htm
    [17]
    FRANKEL O H, BROWN A H D. Current plant genetic resources:A critical appraisal. Genetics: New Frontiers Vol. IV[M]. New Delhi: Oxford and IBH Publishing Co., 1984.
    [18]
    BROWN A H D. Core collection: A practical approach to genetic resources management[J]. Genome, 1989, 31(2): 818-824. doi: 10.1139/g89-144
    [19]
    李国强, 李锡香, 沈镝, 等.基于形态数据的大白菜核心种质构建方法的研究[J].园艺学报, 2008, 35(12):1759-1766. http://www.cnki.com.cn/Article/CJFDTOTAL-YYXB200812008.htm
    [20]
    MAO W H, YI J X, SIHACHAKR D. Development of core subset for the collection of Chinese cultivated eggplants using morphological-based passport data[J]. Plant Genetic Res, 2008, 6(1): 33-40. doi: 10.1017/S1479262108923790
    [21]
    刘娟, 廖康, 曹倩, 等.利用表型性状构建新疆野杏种质资源核心种质[J].果树学报, 2015, 32(5):787-796. http://www.cnki.com.cn/Article/CJFDTOTAL-GSKK201505010.htm
    [22]
    刘遵春, 张春雨, 张艳敏, 等.利用数量性状构建新疆野苹果核心种质的方法[J].中国农业科学, 2010, 43(2):358-370. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201002020.htm
    [23]
    胡建斌, 马双武, 王吉明, 等.基于表型性状的甜瓜核心种质构建[J].果树学报, 2013, 30(3):404-411. http://www.cnki.com.cn/Article/CJFDTOTAL-GSKK201303012.htm
    [24]
    李慧峰, 陈天渊, 黄咏梅, 等.基于形态性状的甘薯核心种质取样策略研究[J].植物遗传资源学报, 2013, 14(1):91-96. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWYC201301013.htm
    [25]
    王红霞, 赵书岗, 高仪, 等.基于AFLP分子标记的核桃核心种质的构建[J].中国农业科学, 2013, 46(23):4985-4995. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201323015.htm
    [26]
    齐永文, 樊丽娜, 罗青文, 等.甘蔗细茎野生种核心种质构建[J].作物学报, 2013, 39(4):649-656. http://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201304013.htm
    [27]
    邓学斌, 刘磊, 闫喆, 等.加工番茄核心种质构建及其遗传背景分析[J].园艺学报, 2015, 42(7):1299-1312. http://www.cnki.com.cn/Article/CJFDTOTAL-YYXB201507010.htm
    [28]
    沈镝, 李锡香.苦瓜种质资源描述规范和数据标准[M].北京:中国农业出版社, 2008.
    [29]
    朱军.作物杂种后代基因型值和杂种优势的预测方法[J].生物数学学报, 1993, 8(1):32-44. http://www.cnki.com.cn/Article/CJFDTOTAL-SWSX199301003.htm
    [30]
    MAHALANOBIS P C. On the generalized distance in statistics[J]. Proc Natl Inst Sci India, 1936, 2(1): 49-55. https://www.bibsonomy.org/bibtex/2aef303a4aba53e4fcd7b0e58f7c205b6/thoni
    [31]
    裴鑫德.多元统计分析及其应用[M].北京:中国农业大学出版社, 1991.
    [32]
    胡晋, 徐海明, 朱军.基因型值多次聚类法构建作物种质资源核心库[J].生物数学学报, 2000, 15(1):103-109. http://www.cnki.com.cn/Article/CJFDTOTAL-SWSX200001015.htm
    [33]
    胡晋, 徐海明, 朱军.保留特殊种质材料的核心库构建方法[J].生物数学学报, 2001, 16(3):348-352. http://www.cnki.com.cn/Article/CJFDTOTAL-SWSX200103013.htm
    [34]
    徐海明, 胡晋, 朱军.构建作物种质资源核心库的一种有效抽样方法[J].作物学报, 2000, 26(2):157-162. http://www.cnki.com.cn/Article/CJFDTOTAL-XBZW200002004.htm
    [35]
    朱岩芳, 祝水金, 李永平, 等. ISSR分子标记技术在植物种质资源研究中的应用[J].种子, 2010, 29(2):55-59. http://www.cnki.com.cn/Article/CJFDTOTAL-BFYY201123075.htm
    [36]
    TANKSLEY S D, MCCOUCH S R. Seed banks and molecular maps: Unlocking genetic potential from the wild[J]. Science, 1997, 277(5329):1063-1066. doi: 10.1126/science.277.5329.1063
    [37]
    李长涛, 石春海, 吴建国, 等.利用基因型值构建水稻核心种质的方法研究[J].中国水稻科学, 2004, 18(3):218-222. http://cdmd.cnki.com.cn/Article/CDMD-10335-2003071922.htm
    [38]
    马洪文, 殷延勃, 王昕, 等.利用数量性状构建粳稻核心种质的方法比较[J].西北农业学报, 2013, 22(11):7-14. http://www.cnki.com.cn/Article/CJFDTOTAL-XBNX201311002.htm
    [39]
    PEETERS J P, MARTINELLI J A. Hierarchical cluster analysis as a tool to manage variation in germplasm collections[J]. Theor Appl Genet, 1989, 78(1): 42-48. doi: 10.1007/BF00299751
    [40]
    马洪文, 陈晓军, 殷延勃, 等.利用基因型值构建宁夏粳稻核心种质的方法[J].种子, 2012, 31(5):43-49. http://www.cnki.com.cn/Article/CJFDTOTAL-ZHZI201205012.htm
    [41]
    DIWAN N, MCINTOSH M S, BAUCHAN G R. Methods of developing a core collection of annual Medicago species[J]. Theor Appl Genet, 1995, 90(6):755-761. doi: 10.1007/BF00222008

Catalog

    Article views (1543) PDF downloads (1548) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return