• Chinese Core Journal
  • Chinese Science Citation Database (CSCD) Source journal
  • Journal of Citation Report of Chinese S&T Journals (Core Edition)
JIA Peng, WEI Long, WANG Yan, LIU Shan, GAO Changjun, ZHOU Ping, LI Jiyue. Diurnal variations in greenhouse gas emissions from Acacia mangium plantation soil[J]. Journal of South China Agricultural University, 2016, 37(6): 84-90. DOI: 10.7671/j.issn.1001-411X.2016.06.013
Citation: JIA Peng, WEI Long, WANG Yan, LIU Shan, GAO Changjun, ZHOU Ping, LI Jiyue. Diurnal variations in greenhouse gas emissions from Acacia mangium plantation soil[J]. Journal of South China Agricultural University, 2016, 37(6): 84-90. DOI: 10.7671/j.issn.1001-411X.2016.06.013

Diurnal variations in greenhouse gas emissions from Acacia mangium plantation soil

More Information
  • Received Date: January 09, 2016
  • Available Online: May 17, 2023
  • Objective 

    In order to study the diurnal variations in fluxes of greenhouse gases including CO2, CH4 and N2O from Acacia mangium plantation soil, and determine the optimal observation time.

    Method 

    The emission fluxes of CO2, CH4 and N2O from A. mangium plantation soil in southern China were continually observed using static-chamber and gas chromatograph.

    Result 

    The fluxes of CO2, CH4 and N2O from A. mangium plantation soil had clear diurnal variations. The A. mangium plantation soil was a source of CO2 and N2O and a sink of CH4. The daily fluxes of CO2, N2O and CH4 ranged from 401.33 to 555.59 mg·m-2·h-1, 24.50 to 34.72 μg·m-2·h-1 and -10.96 to -41.88 μg·m-2·h-1 respectively. The fluxes of CO2 or CH4 from soil surface had highly significant (P < 0.01) or significant (P < 0.05) positive correlations with soil temperature at 5 cm depth, while CH4 flux from soil surface was not significantly correlated with soil temperature.

    Conclusion 

    Based on the analysis of the correction coefficients of three greenhouse gases and manipulability of sampling, the optimal time for collection and observation of these three greenhouse gases from A. mangium plantation in southern China during rainy seasons is around 09:00.

  • [1]
    WANG W C, YUNG Y L, LACIS A A, et al. Greenhouse effects due to man-made perturbations of trace gases[J]. Science, 1976, 194(4266): 685-690. http://www.jstor.org/stable/1743918
    [2]
    DICKINSON R E, CICERONE R J. Future global warming from atmospheric trace gases[J]. Nature, 1986, 319: 109-115. doi: 10.1038/319109a0
    [3]
    KIEHL J T, TRENBERTH K E. Earth's annual global mean energy budget[J]. Am Meteorol Soc, 1997, 78(2): 197-208. doi: 10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;2
    [4]
    IPCC. Climate Change 2013: The physical science basis[M]. Cambridge, UK: Cambridge University Press, 2013.
    [5]
    NAJAFI M R, ZWIERS F W, GILLETT N P. Attribution of Arctic temperature change to greenhouse-gas and aerosol influences[J]. Nat Clim Change, 2015, 5(3): 246-249. doi: 10.1038/nclimate2524
    [6]
    RICHTER D D, MARKEWITZ D, TRUMBORE S E, et al. Rapid accumulation and turnover of soil carbon in a re-establishing forest[J]. Nature, 1999, 400(6739): 56-58. https://www.nature.com/articles/21867
    [7]
    BOWDEN R D, DAVIDSON E, SAVAGE K, et al. Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest[J]. Forest Ecol Manag, 2004, 196(1): 43-56. doi: 10.1016/j.foreco.2004.03.011
    [8]
    DIXON R K, BROWN S, HOUGHTON R A, et al. Carbon pools and flux of global forest ecosystems[J]. Science, 1994, 263(5144): 185-190. doi: 10.1126/science.263.5144.185
    [9]
    BAGGS E M, BLUM H. CH4 oxidation and emissions of CH4 and N2O from Loliumperenne swards under elevated atmospheric CO2[J]. Soil Biol Biochem, 2004, 36(4): 713-723. doi: 10.1016/j.soilbio.2004.01.008
    [10]
    齐玉春, 董云社, 章申, 等.贡嘎山山地暗针叶林带森林土壤温室气体N2O和CH4排放研究[J].中国科学(D辑:地球科学), 2002, 32(11): 934-941. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxk200211007&dbname=CJFD&dbcode=CJFQ
    [11]
    YAN, J H, ZHANG D Q, ZHOU G Y, et al. Soil respiration associated with forest succession in subtropical forests in Dinghushan Biosphere Reserve[J]. Soil Biol Biochem, 2009, 41(5), 991-999. doi: 10.1016/j.soilbio.2008.12.018
    [12]
    林丽莎, 李向义, 韩士杰.长白山天然次生白桦林土壤CO2释放通量研究[J].干旱区地理, 2009, 32(1): 67-71. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ghdl200901012&dbname=CJFD&dbcode=CJFQ
    [13]
    刘实, 王传宽, 许飞. 4种温带森林非生长季土壤二氧化碳、甲烷和氧化亚氮通量[J].生态学报, 2010, 30(15): 4075-4084. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=stxb201015014&dbname=CJFD&dbcode=CJFQ
    [14]
    徐济德.我国第8次森林资源清查结果及分析[J].林业经济, 2014, 36(3): 6-8. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=lyjj201403003&dbname=CJFD&dbcode=CJFQ
    [15]
    周存宇, 张德强, 王跃思, 等.鼎湖山针阔叶混交林地表温室气体排放的日变化[J].生态学报, 2004, 24(8): 1741-1745. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=stxb200408021&dbname=CJFD&dbcode=CJFQ
    [16]
    李锡鹏, 川中丘陵区典型农田和森林土壤温室气体排放特征及影响因素[D]. 成都: 西南交通大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10613-1014257756.htm
    [17]
    ZHENG X H, WANG M X, WANG Y S, et al. Comparison of manual and automatic methods for measurement of methane emission from rice paddy fields[J]. Adv Atmos Sci, 1998, 15(4): 569-579. doi: 10.1007/s00376-998-0033-5
    [18]
    鲍士旭.土壤农化分析[M]. 3版.北京:中国农业出版社, 2000.
    [19]
    田慎重, 宁堂原, 迟淑筠, 等.不同耕作措施的温室气体排放日变化及最佳观测时间[J].生态学报, 2012, 32(3): 879-888. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=stxb201203025&dbname=CJFD&dbcode=CJFQ
    [20]
    TANG X L, LIU S G, ZHOU G Y, et al. Soil-atmospheric exchange of CO2, CH4, and N2O in three subtropical forest ecosystems in southern China[J]. Global Change Biol, 2006, 12(3): 546-560. doi: 10.1111/gcb.2006.12.issue-3
    [21]
    LUO Y Q, WAN S Q, HUI D F, et al. Acclimatization of soil respiration to warming in a tall grass prairie[J]. Nature, 2001, 413(6856): 622-625. doi: 10.1038/35098065
    [22]
    FANG C, MONCRIEFF J B. The dependence of soil CO2 efflux on temperature[J]. Soil Biol Biochem, 2001, 33(2): 155-165. http://www.sciencedirect.com/science/article/pii/S0038071700001255
    [23]
    韩瑛, 杨小燕, 陈祥伟, 等.黑土区不同土地利用方式土壤CO2和N2O通量日变化特征[J].东北林业大学学报, 2014, 42(5): 89-91. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dbly201405022&dbname=CJFD&dbcode=CJFQ
    [24]
    ZHANG W, MO J M, ZHOU G Y, et al. Methane uptake responses to nitrogen deposition in three tropical forests in southern China[J]. J Geophys Res, 2008, 113(D11):3078-3088. doi: 10.1029/2007JD009195/abstract
    [25]
    肖冬梅, 王淼, 姬兰柱, 等.长白山阔叶红松林土壤氮化亚氮和甲烷的通量研究[J].应用生态学报, 2004, 15(10): 1855-1859. doi: 10.3321/j.issn:1001-9332.2004.10.029
    [26]
    窦雅静, 康丽华, 陆俊锟.相思属树种根瘤菌研究进展[J].安徽农业科学, 2013, 41(17): 7511-7514. doi: 10.3969/j.issn.0517-6611.2013.17.042
    [27]
    MO J M, ZHANG W, GUNDERSEN P, et al. Nitrogen addition reduces soil respiration in a mature tropical forest in southern China[J]. Global Change Biol, 2008, 14(2): 403-412. http://or.nsfc.gov.cn/handle/00001903-5/33697
    [28]
    周存宇, 周国逸, 张德强, 等.鼎湖山森林地表CO2 通量及其影响因子的研究[J].中国科学, 2004, 34(S2): 175-182. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxk2004s200j&dbname=CJFD&dbcode=CJFQ
    [29]
    邹碧, 李志安, 丁永祯, 等.南亚热带4种人工林凋落物动态特征[J].生态学报, 2006, 26(3): 715-721. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=stxb200603010&dbname=CJFD&dbcode=CJFQ
    [30]
    MALJANEN M, LⅡKANEN A, SILVOLA J, et al. Methane fluxes on agricultural and forested boreal organic soils[J]. Soil Use Manage, 2003, 19(1): 73-79. doi: 10.1111/sum.2003.19.issue-1
    [31]
    莫江明, 彭少麟, 方运霆, 等.鼎湖山马尾松针阔叶混交林土壤有效氮动态的初步研究[J].生态学报, 2001, 21(3): 492-497. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=stxb200103024&dbname=CJFD&dbcode=CJFQ
    [32]
    NANBA K, KING G M. Response of atmospheric methane consumption by Maine forest soils to exogenous aluminum salts[J]. Appl Environ Microbiol, 2000, 66(9): 3674-3679. doi: 10.1128/AEM.66.9.3674-3679.2000
    [33]
    WRAGE N, VELTHOF G L, VAN BEUSICHEM M L, et al. Role of nitrifier denitrification in the production of nitrous oxide[J]. Soil Biol Biochem, 2001, 33(12): 1723-1732. http://www.sciencedirect.com/science/article/pii/S0038071701000967
    [34]
    ZHANG W, MO J, YU G, et al. Emissions of nitrous oxide from three tropical forests in Southern China in response to simulated nitrogen deposition[J]. Plant Soil, 2008, 306(1/2): 221-236. doi: 10.1007/s11104-008-9575-7
    [35]
    BEKKU Y S, NAKATSUBO T, KUME A, et al. Effect of warming on the temperature dependence of soil respiration rate in arctic, temperate and tropical soils[J]. Appl Soil Ecol, 2003, 22(3): 205-210. doi: 10.1016/S0929-1393(02)00158-0
    [36]
    DAVIDSON E C, BELK E, BOONE R D. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest[J]. Global Change Biol, 1998, 4(2): 217-227. doi: 10.1046/j.1365-2486.1998.00128.x
    [37]
    JANSSENS I A, PILEGAARD K. Large seasonal changes in Q10 of soil respiration in a beech forest[J]. Global Change Biol, 2003, 9(6): 911-918. doi: 10.1046/j.1365-2486.2003.00636.x
    [38]
    孙向阳.北京低山区森林土壤中CH4排放通量的研究[J].土壤与环境, 2000, 9(3): 173-176. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=tryj200003000&dbname=CJFD&dbcode=CJFQ
    [39]
    PAPEN H, BUTTERBACH-BAHL K.A 3-year continuous record of nitrogen trace gas fluxes from untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany: 1: N2O emissions[J]. J Geophys Res, 1999, 104(D15):18487-18503. doi: 10.1029/1999JD900293
    [40]
    WERNER C, KIESE R, BUTTERBACH-BAHL K. Soil-atmosphere exchange of N2O, CH4, and CO2 and controlling environmental factors for tropical rain forest sites in western Kenya[J]. J Geophys Res, 2007, 112(D3): 3308-3323. doi: 10.1029/2006JD007388
    [41]
    沙丽清. 西双版纳热带季节雨林, 橡胶林及水稻田生态系统碳储量和土壤碳排放研究[M]. 勐腊: 中国科学院西双版纳热带植物园, 2008.
    [42]
    DAVIDSON E C, BELK E, BOONE R D. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest[J]. Global Change Biol, 1998, 4(2): 217-227. doi: 10.1046/j.1365-2486.1998.00128.x
    [43]
    匡艳华. 华北落叶松人工林温室气体通量特征及其影响因素[D]. 呼和浩特: 内蒙古农业大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10129-1013249710.htm

Catalog

    Article views (1306) PDF downloads (1376) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return