WANG Dongguang, ZHANG Ningnan, YANG Zengjiang, LIU Xiaojin, HONG Zhou, XU Daping. Study on resistance ability of Aquilaria sinensis trees under artificial induction[J]. Journal of South China Agricultural University, 2016, 37(6): 70-76. DOI: 10.7671/j.issn.1001-411X.2016.06.011
    Citation: WANG Dongguang, ZHANG Ningnan, YANG Zengjiang, LIU Xiaojin, HONG Zhou, XU Daping. Study on resistance ability of Aquilaria sinensis trees under artificial induction[J]. Journal of South China Agricultural University, 2016, 37(6): 70-76. DOI: 10.7671/j.issn.1001-411X.2016.06.011

    Study on resistance ability of Aquilaria sinensis trees under artificial induction

    More Information
    • Received Date: January 16, 2016
    • Available Online: May 17, 2023
    • Objective 

      To study the effects of hormone, salt, fungi and artificial wounding induction on resistance ability of Aquilaria sinensis trees, and discover the mechanism of agarwood formation in A. sinensis trees.

      Method 

      We conducted the experiment in Huidong county, Guangdong province, and used a random block design with three single tree repeats per treatment. Six months after stimulation, stress-resistance related substances and enzyme activities were analyzed for A. sinensis tree samples.

      Result 

      Among the different treatments of hormone, salt, fungi and artificial wounding, the optimal treatments were treatment 2 (MeJA and Et), treatment 8 [NaHSO3 (w=1‰), NaCl(w=20‰) and FeCl2 (w=10‰)], treatment 10 (Trichoderma atroviride) and treatment 16 (burning-chisel-drilling). For these four treatments, the contents of essential oil were 8.48%, 9.86%, 12.46% and 6.21% respectively, approaching or reaching agarwood quality standard (10%). Polyphenol, soluble sugar content, and CAT, POD, SOD, NOS, PAL activities were higher compared to other treatments of the same treatment type, while MDA and starch contents were relatively lower. Based on principal component analysis, the scores of resistance ability of A. sinensis trees with treatment 2, 8, 10 and 16 were 1.83, 2.31, 2.10 and -1.51, respectively, all highest among the same treatment type.

      Conclusion 

      MeJA and Et, NaHSO3 (w=1 ‰), NaCl (w=20‰) and FeCl2 (w=10‰), Trichoderma atroviride and burning-chisel-drilling could induce strong resistance, and could promote agarwood formation of A. sinensis trees.

    • [1]
      张争, 杨云, 魏建和, 等.白木香结香机制研究进展及其防御反应诱导结香假说[J].中草药, 2010, 41(1): 156-159. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zcyo201001045&dbname=CJFD&dbcode=CJFQ
      [2]
      中国国家药典委员会. 中华人民共和国药典: 一部[S]. 北京: 中国医药科技出版社, 2010: 172.
      [3]
      PERSOON G A, BEEK H H V. Growing 'the wood of the gods': Agarwood production in southeast asia[M]// SNELDER D J, LASCO R D. Smallholder tree growing for rural development and environmental services. Berlin: Springer Netherlands, 2008: 245-262.
      [4]
      CHEN H Q, WEI J H, YANG J S, et al. Chemical constituents of agarwood originating from the endemic genus aquilaria plants[J]. Chem Biodivers, 2012, 9(2): 236-250. doi: 10.1002/cbdv.v9.2
      [5]
      NOBUCHI T, SIRIPATANADILOK S. Preliminary observation of Aquilaria crassna wood associate with the formation of aloeswood[J]. Bulletin of the Kyoto University Forests, 1991, 63(2): 226-235. http://agris.fao.org/openagris/search.do?recordID=JP1997004593
      [6]
      ZHANG Z, HAN X M, WEI J H, et al. compositions and antifungal activities of essential oils from agarwood of aquilaria sinensis (lour.) gilg induced by lasiodiplodia theobromae (pat.) griffon. & maubl[J]. J Brazil Chem Soc, 2014, 25(1): 20-26. https://www.researchgate.net/publication/313318802_Artificial_production_of_agarwood_oil_in_Aquilaria_sp_by_fungi_a_review
      [7]
      RON M, SANDY V, NOBUHIRO S, et al. ROS signaling: The new wave?[J]. Trends Plant Sci, 2011, 16(6): 300-309. doi: 10.1016/j.tplants.2011.03.007
      [8]
      SUZUKI N, MILLER G, MORALES J, et al. Respiratory burst oxidases: The engines of ROS signaling[J]. Curr Opin Plant Biol, 2011, 14(6): 691-699. doi: 10.1016/j.pbi.2011.07.014
      [9]
      CORPAS F J, BARROSO J B. Functional implications of peroxisomal nitric oxide (NO) in plants[J]. Front Plant Sci, 2014, 5(5): 240-240. http://www.ncbi.nlm.nih.gov/pubmed/24672535
      [10]
      刘娟. 程序性细胞死亡与沉香倍半萜次生代谢关系的探索研究[D]. 北京: 北京协和医学院, 2015: 41. http://cdmd.cnki.com.cn/Article/CDMD-10023-1015353508.htm
      [11]
      张兴丽. 伤害诱导的白木香防御反应与沉香形成的关系研究[D]. 北京: 北京林业大学, 2013: 78-85. http://cdmd.cnki.com.cn/Article/CDMD-10022-1013214007.htm
      [12]
      陈建勋.植物生理学实验指导[M].广州:华南理工大学出版社, 2002:57-74.
      [13]
      李庆, 叶华智, 杨群芳, 等.七种与小麦近缘的野生植物对禾谷缢管蚜抗性的生化机制[J].植物保护学报, 2004, 31(1): 1-5. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zwbf200401000&dbname=CJFD&dbcode=CJFQ
      [14]
      POJANAGAROON S, KAEWRAK C. Mechanical methods to stimulate aloes wood formation in Aquilaria crassna pierre ex h.lec. (kritsana) trees[J]. Acta Hort, 2005, 2:161-166. https://www.ishs.org/ishs-article/676_20
      [15]
      BOLWELL G P. The origin of the oxidative burst in plants[J]. Biochem Soc Trans, 1996, 23(2): 517-532. http://www.ncbi.nlm.nih.gov/pubmed/8574346
      [16]
      RAZEM F A, BERNARDS M A. Reactive oxygen species production in Association with suberization: Evidence for an NADPH-dependent oxidase[J]. J Exp Bot, 2003, 54(384): 935-941. doi: 10.1093/jxb/erg094
      [17]
      SALTVEIT M E. Wound induced changes in phenolic metabolism and tissue browning are altered by heat shock[J]. Postharvest Biol Tec, 2000, 21(1): 61-69. doi: 10.1016/S0925-5214(00)00165-4
      [18]
      王之胤. 白木香树木中脂类物质形成的激素诱导研究[D]. 南京: 南京林业大学, 2013: 2. http://cdmd.cnki.com.cn/Article/CDMD-10298-1013046162.htm
      [19]
      郝岗平, 杜希华, 史仁玖.干旱胁迫下外源一氧化氮促进银杏可溶性糖、脯氨酸和次生代谢产物合成[J].植物生理与分子生物学学报, 2007, 32(6): 499-506. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zwsi200706006&dbname=CJFD&dbcode=CJFQ
      [20]
      ARASIMOWICZ M, FLORYSZAK-WIECZOREK J. Nitric oxide as a bioactive signalling molecule in plant stress responses[J]. Plant Sci, 2007, 172(5): 876-887. doi: 10.1016/j.plantsci.2007.02.005
      [21]
      BHATTACHARYA A, SOOD P, CITOVSKY V. The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection[J]. Mol Plant Pathol, 2010, 11(5):705-719. doi: 10.1111/j.1364-3703.2010.00625.x
      [22]
      BLANCHETTE R A, VAN BEEK H H. Cultivated agarwood: US 7638145 B2[P]. 2009-12-29.
      [23]
      RAJPUT V D, CHEN Y, AYUP M. Effects of high salinity on physiological and anatomical indices in the early stages of populus euphratica growth[J]. Russ J Plant Physl, 2015, 62(2): 229-236. doi: 10.1134/S1021443715020168
      [24]
      CUI J L, GUO S X, FU S B, et al. Effects of inoculating fungi on Agilawood formation in Aquilaria sinensis[J]. Chin Sci Bull, 2013, 58(26): 3280-3287. doi: 10.1007/s11434-013-5856-5
      [25]
      MOHAMED R, JONG P L, KAMZIAH A K.Fungal inoculation induces agarwood in young Aquilaria malaccensis trees in the nursery[J]. J Forest Res, 2014, 25(1): 201-204. doi: 10.1007/s11676-013-0395-0
      [26]
      ZHAO J, LAWRENCE C D, ROBERT V. Elicitor signal transduction leading to production of plant secondary metabolites[J]. Biotechnol Adv, 2005, 23(4): 283-333. doi: 10.1016/j.biotechadv.2005.01.003
    • Cited by

      Periodical cited type(17)

      1. 侯天元,汤冬梅,张丽萍,周巧红,吴振斌,武俊梅. 抗生素对人工湿地处理水产养殖尾水的影响及其缓解途径. 水生生物学报. 2025(04): 61-71 .
      2. 黄丽,高磊,吴松,郝其睿,李晨辉,汤施展,白淑艳,陈中祥,杜宁宁,覃东立,王鹏. 地西泮在模拟养殖环境中的含量变化及累积特征. 南方水产科学. 2024(02): 38-47 .
      3. 陈进,余忠花,王亚娟,胡闪闪,高礼,陶红. 不同植物对多西环素污染的胁迫响应及其修复潜力研究. 环境工程. 2024(04): 250-257 .
      4. 杨佩汶,林毅,林华,肖玲,甘淑萍,王义安. 不同构型人工湿地-微生物燃料电池对废水中对氯苯酚的净化效果及产电性能的影响. 环境工程学报. 2023(02): 507-516 .
      5. 史沉鱼,黄港平. 土霉素胁迫对黄瓜幼苗生理特性的影响. 北方园艺. 2023(06): 1-11 .
      6. 秦玉春,邹涛,张璇,王永强,国晓春,刘晓晖,卢少勇. 氧氟沙星胁迫下5种湿地植物及其根系微生物群落的差异性响应. 环境工程技术学报. 2023(03): 1079-1087 .
      7. 袁孝康,付绿倩,陈华林,周江敏,刘欣聪,邓仕槐. 水产养殖中抗生素污染治理研究进展. 环境监测管理与技术. 2023(04): 1-6 .
      8. 荣渝虹,孙仕仙,张发明,李良,李荣彪,罗超,郑毅. 香根草对水体中磺胺嘧啶单一及联合污染的去除动态研究. 西南林业大学学报(自然科学). 2023(06): 79-90 .
      9. 黄伟杰,刘学智,唐红亮,汪义杰,陈军. 植物修复在抗生素污染治理中的应用研究进展. 生态科学. 2022(01): 222-229 .
      10. 付雨,剧泽佳,陈慧,赵鑫宇,宋圆梦,王广志,张璐璐,崔建升. 白洋淀喹诺酮类抗生素在底栖动物中的生物富集特征. 中国环境科学. 2022(02): 878-888 .
      11. 胡劲召,张璇,王永强,徐佳敏,卢洪斌,叶长兵,刘晓晖,陈中兵,卢少勇. 磺胺甲恶唑胁迫下人工湿地植物与根际微生物的响应. 环境工程技术学报. 2022(05): 1474-1483 .
      12. 周海东,黄丽萍,陈晓萌,李丹妍,李昕,崔锦裕. 人工生态系统对城市河流中抗生素和ARGs的去除. 环境科学. 2021(02): 850-859 .
      13. 刘昭君,林华,王义安,覃辉,Kong CHHUON. 磷肥种类对李氏禾富集铜、铬的影响及其生理响应. 生态环境学报. 2021(02): 412-419 .
      14. 付雨,剧泽佳,付耀萱,田沛龙,张璐璐,赵鑫宇,陈慧,崔建升. 白洋淀优势水生植物中喹诺酮类抗生素的生物富集特征及其与环境因子相关性研究. 环境科学学报. 2021(09): 3620-3630 .
      15. 谌和平,邹逸凡,张露荷,纪荣平. 人工湿地基质及其生物膜对生活污水中污染物去除效果的研究. 广东化工. 2021(22): 13-15 .
      16. 杜实之. 环境中抗生素的残留、健康风险与治理技术综述. 环境科学与技术. 2021(09): 37-48 .
      17. 李梦月,张某,鲁武峰,兰明先,易璟,李成学,吴国星. 紫茎泽兰对四环素的吸收特性. 生物安全学报. 2020(04): 302-305 .

      Other cited types(15)

    Catalog

      Article views PDF downloads Cited by(32)

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return